
▣ Naums Mogers

Christophe Dubach

ARM Research Summit, September 2019

Functional Interface for
Performance Portability on
Parallel Accelerators

Hardware accelerators

Architectures

Scopes

Applications

2Requirements

CPU GPU

CGRA

FPGA

ASIC

ML

Security

Server Desktop Mobile Embed

Vision

DBGraph

Energy Mem

Hardware accelerators

Architectures

Scopes

Applications

3Requirements

CPU GPU

CGRA

FPGA

ASIC

ML

Security

Server Desktop Mobile Embed

Vision

DBGraph

Energy Mem

Applications

Current landscape

XLA

TPU

BrainWave
ISA

BrainWave

Arm
NN

ARM
ML

MDK

Movidius

HiAI

HiSilicon
NPU

OpenCL

GPUs
Multicore

CPUs

OpenMP VHDL

FPGAs

XLA

TPU

BrainWave
ISA

BrainWave

Arm
NN

ARM
ML

MDK

Movidius

HiAI

HiSilicon
NPU

Applications

Image
Processing

Neural
Networks

Graph
Analytics

Data-Parallel
Intermediate Language

Performance Portable
Code Generator

OpenCL

GPUs
Multicore

CPUs

OpenMP VHDL

FPGAs

Domain-Specific
Languages (DSLs)

Language for
Parallelism

Compiler
Technology

What we need

6

What is the right interface for
HW accelerators?

7

What is the right interface for
HW accelerators?

Functional approach

Abstract

▣ Expresses algorithm (WHAT),
not implementation (HOW)

8

Safe

▣ Easier to use
and parallelise

High-level

▣ Captures plenty of
algorithmic meta-info for
analysis

Expressive

▣ Control flow

▣ Memory management

Pure

▣ Easy to transform

Composable

▣ Easier to maintain, code-
reuse

XLA

TPU

BrainWave
ISA

BrainWave

Arm
NN

ARM
ML

MDK

Movidius

HiAI

HiSilicon
NPU

Applications

Image
Processing

Neural
Networks

Graph
Analytics

Lift: Data-Parallel
Intermediate Language

Lift: Rewrite rule-based compiler
to HW-specific languages

OpenCL

GPUs
Multicore

CPUs

OpenMP VHDL

FPGAs

Domain-Specific
Languages (DSLs)

Language for
Parallelism

Compiler
Technology

Lift

10

Lift www.lift-project.org

▣ Functional data-parallel language and compiler

Lift IR www.lift-project.org

toGlobal

toLocal

toPrivate

toVector

toScalar

add, mul

dot

tanh

Address space
operators

Casters Data
operators

Int, Float

Vector

Array

Data types

Map, Reduce

Zip, Split

Scatter, Gather

Slide

Algorithmic
patterns

12

Lift IR: Views www.lift-project.org

Reorder(stride(s)) >> Map(f)

▣ Virtual composable data layout transformations
□ Reorder, Transpose, Slide, Slice, etc

▣ Expressed with Views
▣ Help avoid extra memory writes

NO WRITES TO
MEMORY

TRANSFORMED
READS

Lift IR www.lift-project.org

toGlobal

toLocal

toPrivate

toVector

toScalar

add, mul

dot

tanh

Address space
operators

Casters Data
operators

Int, Float

Vector

Array

Data types

Map, Reduce

Zip, Split

Scatter, Gather

Slide

Algorithmic
patterns

14

Lift IR www.lift-project.org

Address space
operators

Casters Data
operators

IR level

toGlobal

toLocal

toPrivate

toVector

toScalar

add, mul

dot

tanh

Generic

DSL

conv, lstm

blur, sharpen

select

toDRAM

toSRAM

toRegistor

MapGlobal
MapLocal
ReduceSeq

toInt8
toFloat16

VVMul
MVMul
VTanh

Platform-
specific

Map, Reduce

Zip, Split

Scatter, Gather

Slide

Algorithmic
patterns

Int, Float

Vector

Array

Data types

Vector

Matrix

Tensor

Int8
Float16
Float32

15

How do we achieve
performance portability?

Lift: Rewrite Rules

▣ Express algorithmic implementation choices
▣ Preserve semantic correctness
▣ Leverage algorithmic info

▣ Decouples optimisation from code generation
16

Split-join rule Map fusion rule GEMV rule

Rewrite rules

17

Lift: Rewrite Rules

IR level

▣ Split-join rule

▣ Map fusion rule

▣ Reduce rules

▣ ...

Generic

DSL

▣ Algorithm choices for high-
level primitives

▣ Precision level

▣ ...

Platform-
specific

▣ Using built-ins

▣ Lowering to the platform
programming model

▣ ...

18

Lift: rewriting

HOW TO
OPTIMISE?

19

Lift: rewriting

HARD STARTING
POINT

20

Lift: rewriting Search

21

Lift: rewriting

Exploitation

Search

Built-in
primitive

22

Lift: rewriting

Exploitation

Search

Built-in
primitive

Parallelisation
choice

23

Lift: rewriting

Exploitation

Code generation

Search

Built-in
primitive

Parallelisation
choice

Lift: Rewrite Rules

▣ Domain-specific and generic
▣ Reusable
▣ Provably correct
▣ Self-contained, extensible

24

Lift: Constraint Inference

▣ Required for valid search space generation
when using tuning parameters

▣ Leverages algorithmic meta-info
▣ Can express heuristics and HW restrictions

25

Lift: Search Space Exploration

▣ Uniform random sampling
▣ Predictor models
▣ Genetic algorithms
▣ …

26

Lift: Research Directions

▣ Linear algebra
▣ Sparse data parallelism
▣ Optimising reductions
▣ Stencil computations
▣ 3D wave modelling
▣ High-level synthesis for FPGAs
▣ Machine Learning

27

Lift for Machine Learning

▣ Machine Learning
□ Convolution inference optimisation
□ Platforms: Mali GPUs, BrainWave

28

Lift for Machine Learning

▣ Machine Learning
□ Convolution inference optimisation
□ Platforms: Mali GPUs, BrainWave

29

Lift for Machine Learning

▣ Machine Learning
□ Convolution inference optimisation
□ Platforms: Mali GPUs, BrainWave

30

Lift for Machine Learning

Naums Mogers, PhD student, Edinburgh

How to best exploit HW accelerators?

31

Christof Schlaak, PhD student, Edinburgh

How to generate accelerator architectures?

Lu Li, Postdoctoral Researcher, Edinburgh

How to optimise the host code?
How to drive the rewriting process?

Christophe Dubach, Reader, Edinburgh

All of the above

32

Lift source code is published

https://github.com/lift-project/lift

References
(icons) Noun Project, https://thenounproject.com
(icons) Font Awesome, https://fontawesome.com

http://www.lift-project.org

https://github.com/lift-project/lift
https://thenounproject.com/
https://fontawesome.com/
http://www.lift-project.org/

