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What is the right interface for 
HW accelerators?



7

What is the right interface for 
HW accelerators?



Functional approach

Abstract

▣ Expresses algorithm (WHAT), 
not implementation (HOW)
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Safe

▣ Easier to use 
and parallelise

High-level

▣ Captures plenty of 
algorithmic meta-info for 
analysis

Expressive

▣ Control flow

▣ Memory management

Pure

▣ Easy to transform

Composable

▣ Easier to maintain, code-
reuse
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Lift www.lift-project.org

▣ Functional data-parallel language and compiler



Lift IR www.lift-project.org
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Lift IR: Views www.lift-project.org

Reorder(stride(s)) >> Map(f)

▣ Virtual composable data layout transformations
□ Reorder, Transpose, Slide, Slice, etc

▣ Expressed with Views
▣ Help avoid extra memory writes

NO WRITES TO 
MEMORY

TRANSFORMED 
READS
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Lift IR www.lift-project.org
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How do we achieve 
performance portability?



Lift: Rewrite Rules

▣ Express algorithmic implementation choices
▣ Preserve semantic correctness
▣ Leverage algorithmic info

▣ Decouples optimisation from code generation
16

Split-join rule Map fusion rule GEMV rule



Rewrite rules
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Lift: Rewrite Rules

IR level

▣ Split-join rule

▣ Map fusion rule

▣ Reduce rules

▣ ...

Generic

DSL

▣ Algorithm choices for high-
level primitives

▣ Precision level

▣ ...

Platform-
specific

▣ Using built-ins

▣ Lowering to the platform 
programming model

▣ ...
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Lift: rewriting

HOW TO 
OPTIMISE?
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Lift: rewriting

HARD STARTING 
POINT
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Lift: rewriting Search



21

Lift: rewriting
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Search

Built-in 
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Lift: Rewrite Rules

▣ Domain-specific and generic
▣ Reusable
▣ Provably correct
▣ Self-contained, extensible
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Lift: Constraint Inference

▣ Required for valid search space generation 
when using tuning parameters

▣ Leverages algorithmic meta-info
▣ Can express heuristics and HW restrictions

25



Lift: Search Space Exploration

▣ Uniform random sampling
▣ Predictor models
▣ Genetic algorithms
▣ …
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Lift: Research Directions

▣ Linear algebra
▣ Sparse data parallelism
▣ Optimising reductions
▣ Stencil computations
▣ 3D wave modelling
▣ High-level synthesis for FPGAs
▣ Machine Learning
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Lift for Machine Learning

▣ Machine Learning
□ Convolution inference optimisation
□ Platforms: Mali GPUs, BrainWave
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Lift for Machine Learning

▣ Machine Learning
□ Convolution inference optimisation
□ Platforms: Mali GPUs, BrainWave
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Lift for Machine Learning

▣ Machine Learning
□ Convolution inference optimisation
□ Platforms: Mali GPUs, BrainWave
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Lift for Machine Learning

Naums Mogers, PhD student, Edinburgh

How to best exploit HW accelerators?
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Christof Schlaak, PhD student, Edinburgh

How to generate accelerator architectures?

Lu Li, Postdoctoral Researcher, Edinburgh

How to optimise the host code?
How to drive the rewriting process?

Christophe Dubach, Reader, Edinburgh

All of the above



32

Lift source code is published

https://github.com/lift-project/lift
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