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Abstract

Graphics Processing Units (GPUs) are notoriously hard to

optimize for manually. What is needed are good automatic

code generators and optimizers. Accelerate, Futhark and Lift

demonstrated that a functional approach is well suited for

this challenge. Lift, for instance, uses a system of rewrite

rules with amulti-stage approach. Algorithmic optimizations

are first explored, followed by hardware-specific optimiza-

tions such as using shared memory and mapping parallelism.

While the algorithmic exploration leads to correct trans-

formed programs by construction, it is not necessarily true

for the latter phase. Exploiting shared memory and mapping

parallelism while ensuring correct synchronization is a deli-

cate balancing act, and is hard to encode in a rewrite system.

Currently, Lift relies on heuristics with ad-hoc mechanisms

to check for correctness. Although this practical approach

eventually produces high-performance code, it is not an ideal

state of affairs.

This paper proposes to extract parallelization constraints

automatically from a functional IR and use a solver to iden-

tify valid rewriting. Using a convolutional neural network

on a mobile GPU as a use case, this approach matches the

performance of the ARM Compute Library GEMM convolu-

tion and the TVM-generated kernel consuming between 2.7×

and 3.6× less memory on average. Furthermore, a speedup

of 12× is achieved over the ARM Compute Library direct

convolution implementation.
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1 Introduction

Parallel architectures such as Graphics Processing Units

(GPUs) are notoriously hard to optimize for. Programs have

to be written in low-level languages such as OpenCL, which

expose architectural details including sharedmemory, threads,

synchronization primitives and vectorization. As a result,

many automatic approaches have been proposed for code

generation and optimizations.

However, producing high-performance parallel code au-

tomatically is challenging. There are many optimizations

that need to be considered (e.g., tiling, coalescing, prefetch-

ing), and many ways to map data (e.g., shared memory) and

computation (e.g., work groups, threads), leading to a large

implementation space. Different approaches have been pro-

posed to address this problem. TVM [4] relies on the user to

specify the desired schedule. Polyhedral compilers [2, 22, 24]

automate exposing parallelism, but often rely on heuristic

scheduling combined with an internal performance model

to find an optimal schedule. Accelerate [13] and Futhark [8],

two functional approaches, rely on hard-coded heuristics to

choose a parallelization strategy.

Lift uses a different approach where optimization choices

are expressed via rewrite rules and a search of the space is

performed via sampling [20]. To tackle the large search space,

Lift relies on a multi-stage approach where algorithmic

optimizations such as tiling are first explored using rewriting.
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Figure 1. The entire optimization flow in Lift.

This is followed by hardware-specific optimizations such as

using shared memory and mapping parallelism using the

same rewriting system.

While the algorithmic exploration phase results in trans-

formed programs that are correct by construction, extra ef-

fort is required for the latter phase. Parallelization involves

side-effects that are hard to account for with the fine-grained

rewrite rules of Lift. Most Lift papers shy away from this

problem and, like many, the current Lift compiler relies on

hard-coded heuristics combined with ad-hoc mechanisms

to guide this process. Although this practical approach pro-

duces high-performance code, it is far from being an ideal

state of affairs.

This paper proposes a new approach to mapping paral-

lelism in the context of the data-parallel functional Lift IR.

It reformulates the problem as a constraint satisfaction prob-

lem encoding most of the restrictions of the programming

model. Crucially, rewrite rules are still used to perform the

exploration of the space, but the rewrites producing invalid

mappings of parallelism can be avoided. By automatically

generating parallelization constraints, the compiler prunes

away invalid implementations from the search space.

To evaluate this new approach, the VGG-16 [19] Convo-

lutional Neural Network (CNN) is used as a use-case on a

mobile GPU. The focus is on the convolution ś the most

compute-intensive operation [10] of a CNN architecture.

Prior work [14] has shown how this kernel can be expressed

and optimized in Lift. In contrast to prior work, the mapping

of parallelism is performed automatically using constraints.

Convolution implementations require high levels of loop

nesting especially after tiling and thus present an additional

challenge to parallelize.

The experimental results collected on ARM Mali GPU

show that this new approach outperforms the handwritten

ARM Compute Library [12] direct convolution kernels by

12× and is on par with its GEMM method while using 3.6×

less memory. It also matches the performance of the state-

of-the-art TVM [4] code generator while using 2.7× less

memory, which is important in the context of mobile GPUs.

The main contributions of this paper are:

• Parallelization constraint generation capturing

scheduling restrictions specific to individual loops;

• Automatic parallelization of VGG-16 on ARM Mali

GPU, achieving performance on par with TVM and

memory savings of more than 2×.

The rest of this paper is organized as follows. The next

section gives an overview and motivation while Section 3

introduces background information about convolution and

Lift. Section 4 presents the core contribution of mapping

parallelism in a functional IR with constraints while Section 5

evaluates our new approach. Section 6 discusses related work

and Section 7 concludes.

2 Overview and Motivation

Figure 1 presents the entire Lift optimization flow. Start-

ing from a high-level expression, the input program is first

transformed at the algorithm level by applying optimizations

such as tiling. Then, hardware-specific optimizations come

into play such as optimizing memory access patterns or ex-

ploiting shared memory and mid-level lambda is produced.

The resulting mid-level lambda expresses several structural

optimizations and presents multiple opportunities for paral-

lelization, which are exploited in the second stage.

In contrast to prior Lift work [7], this paper separates

parallelism mapping into its own stage, which produces a

low-level parametric parallelized lambda. In the final stage,

the lambda is auto-tuned, using the same approach presented

in the most recent Lift paper [14]. This results in a low-

level expression, which is vectorized and passed to the Lift

OpenCL code generator [21].

Challenge of Mapping Parallelism. As we will see

shortly, Lift exposes parallelism opportunity through the

use of the map IR primitive which corresponds to a loop. Dur-

ing rewriting, the map primitive can be replaced by a parallel

loop implementation, exploiting different levels of paral-

lelism in the architecture (e.g., work groups, local threads,

vectorization) or turned into a sequential implementation.
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1 for i in 1 to I do // Loop A

2 for j in 1 to J do // Loop B

3 for k in 1 to K do // Loop C

4 local_buf[j][k] = f( input[i][j][k] );

5 for k in 1 to K do // Loop D

6 for j in 1 to J do // Loop E

7 output[i][j][k] = g( local_buf[j][k] );

Listing 1. Example parallelizable expression

Herein lies the challenge of the search space explosion: treat-

ing each loop as an independent parallelization opportunity

results in a large number of invalid mappings of parallelism.

Consider the code in Listing 1 that we wish to map onto

the OpenCL parallelism hierarchy. In OpenCL, parallelism

exists at the global level (G0,G1), or in a combination of

work group (W0,W1) and local levels (L0,L1). In Listing 1, f

is applied on a global input where the results are stored in

a local buffer, which is then read to produce a global result

by applying g. Listing 1 contains five loops (A-E) that can

be mapped in numerous ways. We now look at six (non-

exhaustive) possible mappings listed in Table 1.

Naive approach M1 parallelizes the outer loop across

global threads. Although valid, this might lead to a lot of

sequential work or perhaps little parallelism depending on

the loop iterations count. Since the iteration number could

be a tuning parameter (e.g., dependent on tile size) this could

be an interesting design point nonetheless, as certain tuning

values could lead to good performance.

Mapping M2 parallelizes loops A, B and D across all

global OpenCL threads in two dimensions. However, because

of a data dependency, a global barrier is required between

lines 4 and 5. Since OpenCL does not support global synchro-

nization, this mapping is invalid.

MappingM3 produces out-of-scope reads since local data

cannot be shared between work groups.

Mapping M4 schedules work groups across the outer

loop A, and the compiler can insert a local synchronization

barrier between loops B and D. However, the barrier could

impose a performance penalty.

MappingM5 vectorizes loop E. However, since vectorized

loads require contiguous data in memory and the threads

are accessing non-contiguous elements in line 7, such vec-

torization is invalid.

Mapping M6 is valid and ensures that each thread ac-

cesses only the results it produced itself, thus eliminating the

inter-thread data dependency and the need for the barrier.

Vectorization is applied on the contiguous access in line 4.

This mapping might lead to good performance.

This example demonstrates that naive parallelization strate-

gies can produce invalid code. Manual scheduling of kernels

with hundreds of loops is costly and poorly generalizable.

Furthermore, although invalid kernels could be detected

Table 1. Example parallel mappings for Listing 1. Gn,Wn

and Ln stand for global, work group and local paralleliza-

tions respectively in the OpenCL dimension n. S stands for

sequential and V ś for vectorized.

Loop parallelization
Parallel mapping assessment

A B C D E

M1) G0 S S S S Under-saturated cores

M2) G1 G0 S G0 S Invalid: cannot synchronize

M3) S W0 L0 W0 L0 Invalid: out-of-scope reads

M4) W0 L0 S L0 S Synchronization overhead

M5) W0 L0 S L0 V Invalid: unvectorizable

M6) W0 L0 V S L0 Might be optimal

during code generation, early detection of invalid parallel

mappings is desired to avoid the overhead of tuning invalid

kernels. This paper tackles the problem by modeling paral-

lelization restrictions in Lift using constraints and finding

valid mappings using a solver.

3 Convolution in Lift

CNNs depend on the convolution operation to produce fea-

ture maps, i.e., tensors characterizing spatial distribution

of visual features in the input image; the maps are used in

subsequent layers for classification. In CNN architectures

such as SENet [9], up to 99.99% of inference run time is spent

computing convolutional layers, which is why this paper

focuses on optimizing convolution.

In a convolutional layer, features are encoded using trained

weight tensors called convolutional kernels. A feature map

is obtained by sliding a kernel across both spatial dimen-

sions of the image. Each slided window is convolved with

the kernel weights by multiplying pixel values and corre-

sponding weights across all input channels. An output value

is produced by summing all weighted values of the slided

window.

The two widely adopted convolution algorithms are the

General Matrix Multiply (GEMM) method and direct con-

volution. The GEMM method uses the im2col operation to

produce a copy of each sliding window stacked with other

windows as columns in a single matrix. This allows per-

forming convolution by multiplying the reshaped input and

weights in a single GEMM operation, for which many Ba-

sic Linear Algebra Subprograms (BLAS) libraries provide

optimized kernels. However, GEMM increases memory con-

sumption due to data duplication. In VGG layer 2, im2col

enlarges the input from 13 MB to 116 MB. This puts a sig-

nificant strain on resource-constrained platforms such as

mobile GPUs.

The direct convolution method is based on a stencil algo-

rithm, which updates elements based on their neighboring

values. Although the direct approach uses less memory, the

input access patterns are more complicated than in GEMM,

requiring careful optimization of memory access patterns.

220



CC ’22, April 02ś03, 2022, Seoul, South Korea Naums Mogers, Lu Li, Valentin Radu, and Christophe Dubach

1 def conv( in: [ [ [T ]inChs ]inW ]inH,

2 ks: [ [ [ [T ]inChs ]kerW ]kerH ]outChs,

3 kerStepX: int, kerStepY: int

4 ) : [ [ [T ]outChs ]outW ]outH =

5 mapND2(slideWin: [ [ [T ]inChs ]kerW ]kerH ⇒

6 map(singleK: [ [ [T ]inChs ]kerW ]kerH ⇒

7 reduce(+, 0, map(*,

8 joinND2(zipND3(slideWin, singleK)))),

9 ks), slideND2(kerH, kerStepY, kerW, kerStepX, in))

Listing 2. Lift expression of direct convolution. Base type

T is float

3.1 Functional Expression of Direct Convolution

Listing 2 presents a functional expression of direct convolu-

tion in the Lift language; Figure 2 shows a visual representa-

tion of the same expression. The expression applies on 3D in-

puts and 4D kernels. Inputs are defined across multiple chan-

nels; kernels are defined across input and output channels,

where each output channel represents a feature. slideND2
on line 9 slides a 2D-window across the input, reshaping it

from (inH , inW , inChs) to (outH , outW , kerH , kerW , inChs),

where inH , inW and inChs are input height, width and num-

ber of input channels respectively; outH and outW are the

output height and width respectively and also the numbers

of sliding windows vertically and horizontally. kerH and

kerW are kernel height and width respectively. The 2D-map

on line 5 applies its inner function ś a lambda ś on rows

and columns sliding windows, while the map on line 6 iter-

ates across output channels. Each combination of a sliding

window and a single kernel is reduced to a single value by

pairing the corresponding input values and kernel weights

using zipND3, flattening the resulting 3D array of tuples,

multiplying elements of each tuple and summing weighted

values in an accumulator initialized to zero.

mapNDn, zipNDn, joinNDn and slideNDn are Lift

macros, which are automatically expanded into equivalent

lower-level Lift expressions and are transparent to the Lift

compiler. The (p: T ⇒ e) notation denotes a lambda with a

parameter of type𝑇 and body expression 𝑒 . The next section

discusses Lift IR further.

3.2 Lift IR

The Lift functional data-parallel language abstracts away

the complexities of hardware, shifting the optimization bur-

den from users to the compiler. Expressions such as the one

in Listing 2 declare only what needs to be done, ignoring the

implementational details. For example, the map pattern does

not enforce a particular parallelization strategy, and inputs,

accumulator and outputs address spaces are also not speci-

fied. The functional patterns of Lift create a rich algorithmic

representation of the given problem, helping the compiler

Figure 2. Visualization of direct convolution

to perform radical optimizing transformations of a program.

Lift IR is discussed in detail in previous work [7, 14, 21].

Control Structures. 𝑚𝑎𝑝 and 𝑟𝑒𝑑𝑢𝑐𝑒 are the two main

control structures in Lift: both are compiled to OpenCL for-

loops.𝑚𝑎𝑝 applies 𝑓 on every element of the input while

𝑟𝑒𝑑𝑢𝑐𝑒 "folds" the result using an initialized accumulator and

a binary function.

While the 𝑟𝑒𝑑𝑢𝑐𝑒 pattern is always sequential, Lift com-

plements the sequential mapSeqwith several parallel variants

for OpenCL: mapGlobal, mapWrg and mapLcl. These variants

capture the OpenCL programming model, where work can

be parallelized across a flat thread index domain (global),

work groups and threads within work groups (local). For

each of the three domains, OpenCL permits parallelizing in

three dimensions. For local and global domains, dimension

0 indexes neighboring threads.

Data Layout Transformers. A number of primitives

in Lift express data layout transformation patterns that

only affect the shape of the data without changing its value.

These include 𝑠𝑝𝑙𝑖𝑡 , which subdivides an input array into

chunks, 𝑗𝑜𝑖𝑛, which flattens outermost array dimensions,

and 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 , which swaps two outermost array dimen-

sions. 𝑧𝑖𝑝 transforms a tuple of arrays into an array of tu-

ples; for example, a zipND2 has the following signature:

([ [T ]b ]a, [ [U ]b ]a) ⇒ [[(T ,U ) ]b ]a. Convolution in particular

depends on 𝑠𝑙𝑖𝑑𝑒 , which creates an extra array dimension

by sliding a window of a given size across the outermost

input dimension with a given step [7]. Lift keeps track of

such virtual transformations using its View system which

associates each subexpression with read and write memory

mapping functions that can emit index expressions taking

into account the history of data layout transformations.

Address Spaces. Lift captures theOpenCLmemorymodel

using primitives: toGlobal, toLocal and toPrivate. Wrap-

ping an expression in these forces the output into global,

shared or private memory.
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3.3 Rewriting

The Lift IR yieldswell to automated program analysis thanks

to the lack of side effects and its high-level program represen-

tation. The compiler leverages these properties using rewrite

rules Ð local semantics-preserving transformations of the

AST which are defined on specific patterns. A set of a few

dozens of such rewrite rules can be used to create a search

space covering design decisions required to achieve high

performance.

Since this paper focuses on modeling the parallelization

restrictions, navigating the search space of other optimiza-

tions is outside the scope of this work. We assume that a

set of rewrite rules are chosen heuristically to optimize the

input program, short of mapping parallelism which is the

focus of this work:

• Tiling input image and weights multiple times allows

to exploit data locality at multiple levels;

• Data is reused by prefetching many input tiles and

kernels before entering the loops on lines 5ś6;

• Memory hierarchy is exploited by storing the results

of prefetched data in shared or private memory and

by accumulating in shared or private memory when

reducing;

• Memory access patterns are optimized by inserting

transposition before and after prefetching as well as

across reduction trees;

• Weight kernel partitioning is performed to increase

locality and, sometimes, improve access patterns;

• Vectorization is applied exhaustively to 1D maps with

consecutive memory accesses. To establish whether

accesses are consecutive, Lift checks the differences

between index expressions at iterations i, i + 1, .., i +

(vectorLen − 1).

Applying the optimizations listed above, the rewriting

process creates over 200 parallelizable loops (in the form of

𝑚𝑎𝑝s). The next sections discuss how the exposed parallelism

is automatically exploited and mapped.

4 Parallelization Constraint Generation

State-of-the-art heuristic parallelization methods focus on

defining the prospective parallelizing strategies. This ap-

proach falls short when presented with new parallel archi-

tectures and exotic applications. This section discusses an

alternative approach of capturing the restrictions of the tar-

get. Invalid parallel mappings can be avoided by automat-

ically generating constraints based on a given AST. Valid

parallelizations are free of data races, respect the memory

scoping rules and the parallelism hierarchy.

The constraints discussed here encode parallelization re-

strictions present in many programming models such as

OpenCL, CUDA and OpenMP. We use OpenCL as a shared-

memory execution model use case, but the methodology is

not restricted to this model.

Table 2. Encoding of map transformation choices

Code value Map transformation

0 mapSeq

1 Fused with the outer map

10, 11, 12 mapLcl in dimension 0, 1 or 2 respectively

20, 21, 22 mapWrg in dimension 0, 1 or 2 respectively

30, 31, 32 mapGlb in dimension 0, 1 or 2 respectively

The parallelization pass begins by traversing the given

expression in search of maps, which are used by Lift IR to

express parallelization opportunities. Each map is associated

with a new arithmetic parameter representing a choice of

schedule. Then, the search space is restricted with a set of

constraints on the new parameters, built using expression

types, views, memory allocation, AST structure and target

hardware limitations. Any constraint solver library that sup-

ports all predicates described in Section 4.2 can be used to

generate a restricted search space of implementations to be

traversed using established search techniques.

4.1 Scheduling Choices

Sequential loops are created by replacing mapwith mapSeq.

They create vectorization opportunities and extend the life-

time of a thread.

Parallel loops distribute work across all threads

(mapGlb), work groups (mapWrg) or threads within a work

group (mapLcl), indexed across three OpenCL dimensions.

The dimension choice is explored to achieve memory coa-

lescing since threads within a warp are in dimension 0.

Map fusion can be applied on chains of perfectly nested

maps. Parallelizing fusedmaps allows distributingmore work

across threads. Fusion is achieved by replacing map(map(f))

with (split(..) o map(f) o join).

The map transformation parameters are defined on an

integer range representing scheduling choices, enabling the

use of well-optimized integer constraint solvers. Table 2

provides the parameter encoding scheme. As we will see

later, this encoding allows distinguishing between levels of

parallelism using division by 10, and between parallelization

dimensions ś using modulo 10.

4.2 Constraint Generation

In the context of rewriting Lift programs, a constraint is

a predicate restricting the range of values of one or more

integer parameters representing design choices:

Constraint( parameters: List⟨Parameter⟩,

predicate: List⟨Int⟩ => Boolean )

Where List⟨T⟩ denotes a list of elements of type T, and =>

denotes a compiler-level function. The emitted predicates are

logical conjunctions of quantifier-free equality and inequal-

ity constraints over nonlinear integer domain. The supported
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1 join o map𝐴(map𝐵(_ + z) o join o map𝐶(map𝐷(_ * y)) o

2 split(s1)) o split(s0) $ (X: [T ]n)

Listing 3.An example Lift expression. $ denotes application

and o denotes composition. Letters A-D are unique loop

identifiers used to refer to the corresponding map instances

later on in text. The underscore symbol in map(_ + z)

denotes the map lambda parameter

(a) (b)

Figure 3. The AST (a) and the corresponding map nesting

tree (b) of the expression in Listing 3; arrows denote compo-

sition, double lines denote nesting

operators express comparison (>, <, ≥, ≤, =,≠), integer arith-

metic (+, −, /, ×, %) and logical operators: AND (∧), OR (∨)

and NOT (¬). Constraints are defined either manually to ex-

press OpenCL and hardware limitations and heuristics, or

generated automatically to preserve program semantics.

The number of parallelizable maps and their positions in

the AST are not known in advance since rewriting is per-

formed before scheduling, and rewrite rules can add, relocate

and eliminate maps in the program candidates. This makes

it necessary to collect contextual information of the current

expression before constraints can be generated. The contex-

tual functions listed in Table 3 are used to choose the maps

to generate constraints for.

Consider an example function 𝑓 , which multiplies each

element of the array X by a scalar value y and adds the scalar

z to each element of the resulting array:

f (X : [T ]N , y : T , z : T ) = X ∗ y + z

Listing 3 is one possible implementation of 𝑓 , in which

multiplication is double-tiled and summation is single-tiled.

The corresponding map nesting tree shown in Figure 3b can

be used to provide the first four functions in Table 3. The

MapNestingChain set, for example, would contain chains

(map𝐴, map𝐵) and (map𝐴, map𝐶 , map𝐷 ). ConcreteMaps is col-

lected by checking the nested user functions; memory usage

is inferred from the toLocal and toPrivate primitives. The

three last functions return the dimensions of parallelism for

each map construct in a nesting chain.

Most contextual functions in Table 3 are known to the

compiler during constraint generation from just the given

lambda and can be used to decide which constraints to gen-

erate. The three last functions, however, are based on the

chosen map parallelizations, and can therefore be evaluated

Table 3. Contextual functions for constraint generation

Contextual function Result

NestedMaps(m) All maps nested in map m.

OuterMaps(m) All maps wrapping map m.

MapNestingChains All map chains from the outer

to the innermost nested maps.

m1.perfectlyNestedIn(m2) True if map m1 is perfectly nested

in map m2.

ConcreteMaps All maps that write to memory.

m.usesPrivateMemory, True if map m accesses private or

m.usesLocalMemory local memory respectively.

GlbDimsUsedIn(maps), Global, work group or local

WrgDimsUsedIn(maps), dimensions respectively used

LclDimsUsedIn(maps) in maps.

only in the solving phase, once the solver parallelizes the rel-

evant maps. These functions need to be expressed in a way

a solver can parse, i.e., as logical conjunctions integrated

into the constraints themselves. For example, when some

constraint C must be enforced for each global dimension

used among (map𝐴, map𝐵), the production rule generating C

is equivalent to:

∀g ∈ GlbDimsUsedIn(map𝐴, map𝐵) : C(map𝐴, map𝐵) ⇐⇒
∧

g ∈ {0,1,2}

C(map𝐴, map𝐵) ∨ (mapEncoding(map𝐴) ≠ 30 + g ∧

mapEncoding(map𝐵) ≠ 30 + g)

Where
∧

denotes conjunction, and mapEncoding(m) returns

the encoding of m according to Table 2. This means that for

each parallel dimension g, either the constraint C must hold,

or the dimension g must not be used in any of the maps.

Abstracting these extra conjunctions away as stand-alone

contextual functions leads to concise production rules.

The contextual information is used to generate six types

of constraints that are satisfied only by programs that ad-

here to OpenCL programming model and are data race-free.

In the absence of a formal definition of a correct OpenCL

program, the constraints discussed below attempt to capture

the restrictions listed in the OpenCL documentation [6].

4.3 Memory Scoping Constraints

Parallel programming models often restrict memory types to

specific parallel levels. In OpenCL, private memory is acces-

sible to a single thread, while local memory is shared across

threads in a work group, but not across work groups; global

memory is accessible on all levels. On a GPU, private, local

and global memories can correspond to registers, compute

core SRAM blocks and DRAM respectively. Due to differ-

ing access speeds and capacities of the three memory types,

an optimal memory mapping for a memory-bound appli-

cation is heterogeneous and specific to the target platform.

An automatic parallelization method must produce valid

implementations irrespectively of the memory mapping.

223



Mapping Parallelism in a Functional IR through Constraint Satisfaction CC ’22, April 02ś03, 2022, Seoul, South Korea

Private Memory Scoping. maps that consume or produce

private memory cannot be parallelized since private memory

is restricted to a single thread. For example in Listing 3, if

map𝐷 writes the output into registers, both map𝐷 and its

consumer map𝐵 must be executed within the same thread, i.e.,

only the outer map𝐴 can be parallelized. Thus, if parameter y

of map𝐷 , or map𝐷 output are in private memory, map𝐷 cannot

be transformed into mapGlb, mapWrg or mapLcl.

A constraint must be generated for map𝐷 that allows only

the mappings where map𝐷 is sequential or fused with an

outer map. A constraint for such maps can be generated as

follows:

∀m ∈ ConcreteMaps, m.usesPrivateMemory

GEN CONSTRAINT: mapEncoding(m)/10 < 1
(1)

This represents a production rule defining which map or

combination thereof to generate which constraint for. Rule 1

generates the constraint if input or output memories of m

are private, or if m accesses a free private variable defined in

an outer scope. mapEncoding(m)/10 < 1 requires that such

maps are not parallel.

SharedMemory Scoping. Localmemory scoping requires

that shared memory is only accessed by threads executed

on the same compute core. In Listing 3, the multiplication

output could be put in local memory; in that case, a legal

parallelization would be following:

.. o mapWrg𝐴(0)(mapLcl𝐵(0)(toGlobal(_ + z)) o .. o

mapLcl𝐶(0)(mapSeq𝐷(toLocal(_ * y))) o ..) o .. $ X

The following parallelization would be illegal:

.. o mapGlb𝐴(1)(mapGlb𝐵(0)(toGlobal(_ + z)) o .. o

mapGlb𝐶(0)(mapSeq𝐷(toLocal(_ * y))) o ..) o .. $ X

A constraint must be produced requiring that local mem-

ory is accessed only within local maps assigned to a single

work group. This constraint is expressed as follows:

∀m ∈ ConcreteMaps, m.usesLocalMemory,

∀Chain ∈ MapNestingChains, m ∈ Chain,

∀w ∈ WrgDimsUsedIn(Chain)

GEN CONSTRAINT: (mapEncoding(m)/10 < 2) ∧
∨

mOuter ∈ (Chain ∩ OuterMaps(m))

mapEncoding(mOuter) = 20 + w

(2)

Where
∨

denotes inclusive disjunction, m ∈ Chain restricts

the constraint to the chains that include m, and mOuter is one

of the outer maps of m. The WrgDimsUsedIn term can only

be evaluated by the constraint solver once the search begins,

so the constraint is supplemented by predicates enumerating

all outer maps of m.

Rule 2 ensures that maps consuming or producing shared

memory are local or sequential. It also ensures that such

maps are uniquely assigned to a single work group by outer

instances of mapWrg.

4.4 Hierarchical Parallelism Constraints

The hierarchies of parallelism in parallel hardware present

extra challenge in scheduling computation. The levels of

parallelism must be mapped exhaustively, unambiguously,

and conforming to the hierarchy. This section focuses on

three parallelism levels of OpenCL: global, work group and

local.

Duplicate Scheduling Constraint. maps that are di-

rectly or indirectly nested cannot be parallelized in the same

domain and dimension. In Listing 3, map𝐶 and map𝐷 cannot

be parallelized equally, and the same for other map nests.

Duplicate scheduling is prevented as follows:

∀m ∈ ConcreteMaps, ∀mInner ∈ NestedMaps(m)

GEN CONSTRAINT: (mapEncoding(m)/10 < 1) ∨

(mapEncoding(m) ≠ mapEncoding(mInner))

(3)

The disjunction term mapEncoding(m)/10 < 1 ensures that

the constraint is applied to the parallel maps.

Local Thread Indexing Dimensionality Constraint.

Dimensions used for thread indexing within a work group

must match dimensions used for work group indexing and

vice versa. For example, if an expression uses mapLcl(0) and

mapLcl(1) and not mapLcl(2), it must also use mapWrg(0)

and mapWrg(1), but not mapWrg(2). It is evident from the

nesting tree in Figure 3b that the maximum depth of map

nesting in the example expression is three; the only allowed

parallelizations are therefore a mapWrg nesting a mapLcl

in the same dimension, or up to three nested instances of

mapGlobal using different dimensions. This restriction is

expressed as follows:

∀Chain ∈ MapNestingChains,

∀l ∈ LclDimsUsedIn(Chain)

GEN CONSTRAINT:
∨

w ∈ WrgDimsUsedIn(Chain)

w = l

(4)

∀Chain ∈ MapNestingChains,

∀w ∈ WrgDimsUsedIn(Chain)

GEN CONSTRAINT:
∨

l ∈ LclDimsUsedIn(Chain)

l = w

(5)

Local Thread Indexing Hierarchy Constraint. User

functions must be parallelized across work groups before

they can be parallelized across work group threads. In Lift,

this means that no mapLcl can have a mapWrg with the same

dimension nested inside, and each mapLcl must be nested

in a mapWrg with the same dimension.

In the Listing 3 example, this constraint permits map𝐴,

map𝐵 and map𝐶 to be made mapWrg(0), mapLcl(0) and

mapLcl(0) respectively, but not mapLcl(0), mapWrg(0) and

mapWrg(0).

This constraint is produced as follows:

∀m ∈ ConcreteMaps, ∀mInner ∈ NestedMaps(m)

GEN CONSTRAINT:

¬( (mapEncoding(m)/10 = 1) ∧

(mapEncoding(mInner)/10 = 2) ∧

(mapEncoding(mInner)%10 = mapEncoding(m)%10))

(6)
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Exhaustive Thread Indexing Constraint. All user func-

tions must be parallelized in the same number of dimensions

to leave no ambiguity in work distribution among threads.

For the two nesting chains in Figure 3b, this requires that if

map𝐴 and map𝐵 are mapWrg(0) and mapLcl(0) respectively,

there must also be a mapLcl(0) among map𝐶 and map𝐷 .

∀ChainA ∈ MapNestingChains, ∀ChainB ∈ MapNestingChains,

∀l ∈ LclDimsUsedIn(ChainA)

GEN CONSTRAINT:
∨

m ∈ ChainB

mapEncoding(m) = 10 + l

(7)

Similar constraints are generated for the work group and

global domains. All three constraints require that if a parallel

dimension of a given domain is used in one map nesting chain,

it must also be used in all other chains.

4.5 Sequential Map Fusion Heuristic

Perfectly nested sequential maps can always be fused to re-

duce search space:

∀Chain ∈ MapNestingChains, ∀m1 ∈ Chain, ∀m2 ∈ Chain,

m2.perfectlyNestedIn(m1)

GEN CONSTRAINT: ¬( (mapEncoding(m1) = 0) ∧

(mapEncoding(m2) = 0))

(8)

This forces all perfectly nested map pairs to be either fused or

parallelized. Section 5.5 discusses how this heuristic affects

the search.

4.6 Synchronizability

Safe parallelization requires that interdependent threads

are synchronizable. The following expression is an example

where this might be impossible:

mapLcl𝐴(1)(mapLcl𝐵(0)(f) o transpose o mapLcl𝐶(0)(g)

) $ (X: [T ]n)

transpose introduces an inter-thread dependency between

mapLcl𝐵 and mapLcl𝐶 , forcing the compiler to insert a bar-

rier between the loops. However, depending on n and the

work group size, some threads might perform fewer itera-

tions:

for (int i𝐴 = get_local_id(1);

i𝐴 < n / get_local_size(1);

i𝐴 += get_local_size(1)) {..}

get_local_id(1) and get_local_size(1) are OpenCL

built-in primitives that return local thread index and the

work group size respectively in the dimension 1. When n is

notmultiple of thework group size, threads perform differing

numbers of iterations. With a barrier inside the loop, some

threads get blocked indefinitely.

In Lift, the synchronizability condition is enforced through

a compiler check just before code generation. Barrier loca-

tions are determined by analyzing loop bounds, computed

using tuned parameters such as tile sizes and work group di-

mensions. Modeling synchronizability as a constraint before

tuning would require estimating barrier locations conser-

vatively. By sacrificing early detection in this case, better

search coverage is achieved.

5 Evaluation

5.1 Experimental Methodology

Convolutional layers of the VGG-16 are expressed in Lift.

We compare against TVM and the ARM Compute library on

the HiSilicon Kirin 970 SoC embedded GPU (ARM Mali-G72

with 12 cores). GPU frequency is fixed to 767MHz (maxi-

mum). Each inference is performed over one image. All three

frameworks produce specialized OpenCL code to run on the

GPU. The search and Lift compilation are timed on an Intel

Xeon E5-2630v3 with 8GB RAM.

5.1.1 Lift. Convolution is automatically parallelized by

constructing a search space through constraint generation us-

ing the Choco-solver library [17] v4.10.1, which is a good fit

since it supports nonlinear integer constraints. Values of the

tuning parameters such as tile sizes and thread configuration

are then chosen heuristically to saturate compute cores and

registers. The parallelized expression is vectorized wherever

possible by analyzing array indices. Each low-level expres-

sion is compiled into a C++ host code and a set of OpenCL

kernels. The best candidate is chosen through randomized

exploration based on time and memory consumption mea-

surements.

For the run time measurements, we use our own OpenCL

profiler Ð a wrapper that intercepts cl_event instances

raised on the start and finish of the OpenCL kernel exe-

cutions. The timings we collect include the time spent on

padding and de-padding. Each candidate is run 3 times and

the median value is reported. Functional correctness is veri-

fied against a manually written C implementation.

The parallel mapping search times include the penalty of

evaluating the candidates that satisfy the constraints but fail

the extra ad-hoc checks. We use Lift compiler memory allo-

cation reports to calculate the exact memory consumption

of the generated programs.

5.1.2 ARM Compute Library. ARM Compute (v19.02) is

used to produce OpenCL implementations of VGG-16 con-

volutional layers configured using the ARM Compute Graph

API. The implementations are tuned using the ARM Com-

pute auto-tuner. The library produces both direct and GEMM-

based implementations.

The performance is profiled by intercepting the OpenCL

events. Memory consumption is calculated manually based

on the stencil and GEMM algorithms.

5.1.3 TVM. TVM is chosen as the comparison code gener-

ator since it generally offers better performance than compet-

ing frameworks [11]. We use TVM v0.6, built with OpenCL

support generated using LLVM version 4.0.0. For a fair com-

parison, the Winograd strategy is disabled in the Python
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Figure 4. Performance and memory consumption comparison of Lift-generated kernels versus the direct and GEMM-based

convolution methods in ARM Compute library and TVM-generated kernels on VGG-16 convolutional layers

wrapper of TVM. Winograd implementations incur a loss of

precision and are therefore not semantically equivalent to

convolution, while Lift preserves the semantics of the origi-

nal problem. We used TVM’s preferred convolution method

for the Mali GPU: Spatial Pack Convolution [25], which ap-

plies im2col and GEMM on the tiled input.

The TVMauto-tuner, with the GATuner, explores 1000 can-

didates discarding slower implementations that take longer

than 100 ms to finish. A median of 30 trials per candidate

is recorded. Convolutional layers are constructed using the

Relay operation, conv2d, with all weights and input being

represented in float32 format. TVM compiler optimization

is set to level 3. We use TVM auto-tuner reports to collect run

time measurements, and we calculate memory consumption

based on the intercepted OpenCL memory allocation calls.

5.2 Results

Performance and memory consumption of the best imple-

mentations are provided in Figure 4. The performance of

each implementation is measured in floating-point opera-

tions (FLOPs) per second. To obtain framework performance

on an individual layer, the theoretical number of FLOPs re-

quired by the layer configuration is divided by the time spent

computing layer outputs. Compared with the pure run time,

the chosen metric is normalized across layers of varying

sizes. Within the 3 trials, the first one often suffers the GPU

"warmup" overhead; the variance among the remaining runs

is within 1%.

Figure 4 also provides average per-layer performance and

memory consumption. Performance across all convolutional

layers (ALL CONV) takes into account duplicate layer con-

figurations; it is calculated by dividing the total number of

FLOPs of all convolutional layers by the total run time. The

end-to-end run time of VGG can be inferred from ALL CONV

since most of the time is spent computing convolution.

Table 4. Breakdown of parallelization constraints generated

by the Lift from the mid-level convolution lambda

Constraint # of instances

Private memory 32

Shared memory 13

Duplicate scheduling 34

Local thread indexing dimensionality 1

Local thread indexing hierarchy 34

Exhaustive thread indexing 9

On average, Lift is 17% slower thanARMCompute GEMM

methodwhile consuming 3.6× lessmemory. Across thewhole

VGG-16, Lift is on par with ARM Compute GEMM; the max-

imum memory consumption is 4.7× smaller. Lift is on par

with TVM on the average layer and is slightly faster across

the whole VGG-16. Average and maximum memory con-

sumption is 2.7× and 2.3× better respectively. Compared to

the theoretical minimum memory footprint achieved by the

direct method, Lift requires only 1 Mbyte more on average.

5.3 Parallelization Analysis

Lift generated 123 parallelization constraints from the mid-

level lambda; the breakdown of the constraint instances is

provided in Table 4. Of those, most constraints were gener-

ated to prevent naive scheduling mistakes such as duplicate

scheduling and wrong thread indexing hierarchy. 32 con-

straints were required to enforce private memory scoping

since the mid-level lambda was optimized to use the register

memory as much as possible.

Out of 81,000 generated candidates satisfying all con-

straints, 5% passed the extra compiler checks; 33% were not

synchronizable and 62% used too much memory. This sug-

gests that further effort is warranted to model these checks

as constraints to accelerate the search further.
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Figure 5. Exploration efficiency and the breakdown of time

spent in each stage of three parallelization approaches: man-

ual, constraint solver-based and random for VGG-16 layers

19 and 21. The curves are annotated with the numbers of

evaluated candidates; the horizontal dotted line shows the

projected best throughput

5.4 Exploration Efficiency

Figure 5 shows the best throughput achieved as a func-

tion of exploration time for the heuristic-based manual ap-

proach [14] and the automatic approaches. The constraint

solver-based approach outperforms the manual approach

after just 88 seconds and reaches peak performance after 95

minutes.

The time breakdown suggests that the solver-based ap-

proach spends half the time searching for valid parallel map-

pings. This increases the time it takes to generate one valid

implementation at least twofold compared to the manual

approach. The solver-based approach also takes more time

in the execution phase due to having to evaluate slow imple-

mentations. However, the manual approach requires more

time and human expertise to pick a valid parallel mapping.

With the random approach, only 1 out of 49,000 gener-

ated candidates satisfies the constraints. In the 98 minutes

it takes to produce 1 random valid candidate (with poor

performance), the solver-based method already finishes its

search achieving the highest throughput. The time spent

by the random approach is dominated by the search phase

due to the naive search strategy. Both the naive and the

solver-based approaches avoid spending time compiling and

executing invalid implementations thanks to the paralleliza-

tion constraints. Despite that and the randomized search

in both cases, the solver-based method iteratively reduces

the search space during constraint satisfaction through con-

straint propagation. Parts of the search space are discarded

quickly and less time is spent evaluating invalid candidates.

The exploration time could be reduced further by adding

more constraints expressing parallelization heuristics, syn-

chronizability and memory consumption restrictions, and

an objective function.
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Figure 6. Throughput expectancy per number of evaluated

candidates with different sequential map fusion strategies for

VGG-16 convolution layers 19 and 21

5.5 Sequential Map Fusion

Throughput expectancy depending on search duration is

shown on Figure 6 for three sequential map fusion strategies.

Expectancy after evaluating 𝑁 candidates is calculated us-

ing a data set of 250 candidates per strategy by uniformly

sampling 𝑁 candidates 100 times and taking a median of 100

maximum throughputs sampled.

The results indicate that always fusing sequential maps

does not reduce maximum throughput. The strategy yielded

best throughput on VGG-16 layers 19 and 21 after evaluat-

ing just 70 candidates compared to 140 for randomized map

fusion. The difference might be explained by the reduction

of search space.

6 Related Work

PPCG [23], LetSee [16], PlaidML [24], Tensor Comprehen-

sions [22], and Tiramisu [2] depend on polyhedral compi-

lation to optimize workloads through linear programming,

affine transformations and data access optimizations. By rea-

soning on the level of loops, polyhedral approaches make the

scheduling problem harder and have to resort to heuristic

parallelization strategies. The functional patterns in Lift

facilitate static analysis through rich representation, which

allows generating parallelization constraints and mapping

parallelism automatically.

PetaBricks [15] depends on the user to specify the algo-

rithm and an auto-tuner to choose the best candidate. This

approach limits the search to manually provided implementa-

tions. Lift makes the algorithmic choices transparent to the

user. Futhark [8] uses a functional IR to facilitate semantics-

preserving rewriting; it brings as much nested parallelism

outwards as possible and parallelizes the outermost loops

only. This limitation puts pressure on the programmer to

choose which maps to interchange outwards. Lift can par-

allelize imperfectly nested loops without supervision. Like

Futhark, Accelerate [13] focuses on rewriting the AST to

expose more parallelism through loop transformations. For

scheduling, it relies on template skeletons.
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The TVM [4] compiler achieves state-of-the-art perfor-

mance across state-of-the-art DNNs [11]. TVM’sHalide IR [18]

allows users to specify parametric parallel schedules to be

explored by an auto-tuner. Performance is highly dependent

on the good initial choice of schedules, while Lift explores

a larger search space automatically.

Project Ansor [26] provides a TVM auto-scheduler that

explores the search space of parallel templates. Ansor can

generate invalid parallel mappings, resulting in search time

wasted on evaluation of bad candidates. Parallel constraints

in Lift prune most invalid kernels; the search is further

accelerated since the solver quickly discards parts of the

space through constraint propagation.

The Halide Autoscheduler [1] uses a tree search algorithm

to explore the design space of Halide schedules. On GPUs,

the search is limited by course-grained heuristics such as

assigning outermost loops to thread blocks. While TVM

schedules are integrated into the code generator, Lift rewrite

rules are independent.

Lift and Spiral [5] are similar in their use of rewrite rules

to transform a functional IR. Spiral also uses constraints to

ensure valid parallelization. The IR focuses on macro oper-

ators such as Cartesian product, direct sum and Kronecker

product; the latter is used to capture parallelism. Lift uses

more generic low-level primitives such as map and reduce.

The partially specified implementations IR [3] expresses

programs using scalar arithmetic operators and iteration

dimensions. The compiler optimizes the implementation

through constraint satisfaction. Lift IR is more expressive

thanks to its data layout transformations such as transpose.

This allows explicit control over coalescing and creates vec-

torization opportunities.

7 Conclusions

As seen, the Lift IR exposes plenty of parallelism. This pa-

per demonstrates how this parallelism is exploited safely

by auto-generating parallelization restrictions from the rich

representation of the program. This shows that the IR can

be leveraged to both increase the design space through ex-

tensive rewriting and to prune the invalid candidates from

the space.
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A Artifact Appendix

A.1 Abstract

This artifact contains the parallel code generator Lift which

is described in the CC 2022 paper Mapping Parallelism in a

Functional IR through Constraint Satisfaction. Furthermore,

this artifact contains the Docker image, scripts and best-

found convolution kernels required to reproduce the perfor-

mance and search efficiency results presented in the paper.

To validate the results, build Lift, run the best-found VGG-

16 convolution kernels on a Mali GPU board, and, finally use

the plotting script to reproduce the results from Figure 4 in

the paper. We also provide scripts to perform time-intensive

parallel mapping space exploration and discover the best par-

allelizations for each layer of VGG-16 for a given Mali GPU

board, as well as measure exploration duration to reproduce

Figure 5 in the paper.

A.2 Artifact Check-list (Meta-information)

• Program: The Lift parallel code generator implemented in

Scala

• Compilation:With provided scripts

• Model: VGG-16 is included as part of the artifact

• Data set: Included as part of the artifact

• Run-time environment: Linux

• Hardware: a host machine to run Lift and a Linux machine

with a Mali G72 GPU

• Metrics: throughput (GFLOPs per sec), memory consump-

tion (MByte), search duration (sec)

• Output: Runtime in CSV files, memory consumption in the

generated OpenCL kernels and plots as PDF

• Experiments: Git clone; build software; run the OpenCL

kernels on the Mali board; observe performance results; run

the search; observe search efficiency

• How much disk space required (approximately)?:

3 GBytes

• How much time is needed to prepare workflow (ap-

proximately)?: 30 minutes

• How much time is needed to complete experiments

(approximately)?: 10 minutes to reproduce Figure 4 with

best-found kernels, 30 hours to run the search and reproduce

Figures 4 and 5

• Publicly available: Yes

• Code licenses:MIT

• Archived: 10.6084/m9.figshare.19249817

A.3 Description

A.3.1 How to Access. The artifact is publicly available

and hosted on gitlab at https://gitlab.com/naummo/liftpar-

cc-2022-artifact.

A.3.2 Hardware Dependencies. A host Linux machine,

and a board with Mali G72 running Linux.

A.3.3 SoftwareDependencies. The hostmachine requires

git, git-lfs, wget, curl. For a Docker installation, the Docker

engine is required; for a direct installation, the following are
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required: Python 3+, Texlive LaTeX, Lift, Java 8 SDK, SBT,

CMake. The Mali board requires Debian OS with OpenCL

support and gcc 7.2.1.

A.3.4 Data Sets. Datasets are included in the artifact.

A.3.5 Models. Models are included in the artifact.

A.4 Installation

After cloning the repository, a Docker image is provided to

set up all requirements on the host machine. For a direct

installation, build scripts are provided for Lift, SBT and

CMake. An OpenCL device should be set up with a Linux,

OpenCL library and gcc. Detailed installation descriptions

are given on gitlab.

A.5 Experiment Workflow

The provided scripts should be used for plotting the results.

Two workflows are suggested: reproducing the main results

presented on Figure 4 by rerunning the best-found kernels

and performing a time-consuming parallel mapping search

to rediscover good kernels naturally. The latter workflow

also produces timings required to plot Figure 5. Detailed

descriptions for the experiment workflows are provided on

the gitlab page.

A.6 Evaluation and Expected Results

The main results of the artifact evaluation are to repro-

duce the performance andmemory consumption comparison

given in Figure 4, and the search efficiency evaluation given

in Figure 5. Depending on the host machine we expect the

search to take a similar amount of time as reported in the

paper.

The reviewers are invited to investigate the implementa-

tion of convolution and parallelization constraints in Lift.

The gitlab page describes how to access Lift expressions,

constraint production rules implementation and generated

C++ and OpenCL implementations.

A.7 Experiment Customization

The experiment can be customized to find good parallel map-

pings for a different OpenCL device, a different convolutional

neural network or another application. The gitlab page de-

scribes how to provide the target device specifications and

new parallelization constraints to Lift to truncate the search

space accordingly.

References
[1] AndrewAdams, KarimaMa, Luke Anderson, Riyadh Baghdadi,

Tzu-Mao Li, Michaël Gharbi, Benoit Steiner, Steven Johnson,

Kayvon Fatahalian, Frédo Durand, et al. 2019. Learning to

optimize halide with tree search and random programs. ACM

Transactions on Graphics (TOG) 38, 4 (2019), 1ś12. https:

//doi.org/10.1145/3306346.3322967

[2] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane,

Emanuele Del Sozzo, Abdurrahman Akkas, Yunming Zhang,

Patricia Suriana, Shoaib Kamil, and Saman Amarasinghe.

2019. Tiramisu: A polyhedral compiler for expressing fast

and portable code. In 2019 IEEE/ACM International Symposium

on Code Generation and Optimization (CGO). IEEE, 193ś205.

https://doi.org/10.1109/CGO.2019.8661197

[3] Ulysse Beaugnon, Basile Clément, Nicolas Tollenaere, and

Albert Cohen. 2019. On the Representation of Partially

Specified Implementations and its Application to the Opti-

mization of Linear Algebra Kernels on GPU. arXiv preprint

arXiv:1904.03383 (2019). https://doi.org/10.48550/arXiv.1904.

03383

[4] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng,

Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,

Yuwei Hu, Luis Ceze, et al. 2018. {TVM}: An automated end-to-

end optimizing compiler for deep learning. In 13th {USENIX}

Symposium on Operating Systems Design and Implementation

({OSDI} 18). 578ś594. https://doi.org/10.5555/3291168.3291211

[5] Franz Franchetti, Tze Meng Low, Doru Thom Popovici,

Richard M Veras, Daniele G Spampinato, Jeremy R Johnson,

Markus Püschel, James C Hoe, and José MF Moura. 2018.

SPIRAL: Extreme performance portability. Proc. IEEE 106,

11 (2018), 1935ś1968. https://doi.org/10.1109/JPROC.2018.

2873289

[6] The Khronos Group. 2022. OpenCL Reference Pages. https://

www.khronos.org/registry/OpenCL/sdk/2.2/docs/man/html/

[7] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei

Gorlatch, and Christophe Dubach. 2018. High performance

stencil code generation with lift. In Proceedings of the 2018

International Symposium on Code Generation and Optimization.

100ś112. https://doi.org/10.1145/3168824

[8] Troels Henriksen, Niels GW Serup, Martin Elsman, Fritz Hen-

glein, and Cosmin E Oancea. 2017. Futhark: purely functional

GPU-programming with nested parallelism and in-place array

updates. In Proceedings of the 38th ACM SIGPLAN Conference

on Programming Language Design and Implementation. 556ś

571. https://doi.org/10.1145/3062341.3062354

[9] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation

networks. In Proceedings of the IEEE conference on computer

vision and pattern recognition. 7132ś7141. https://doi.org/10.

1109/CVPR.2018.00745

[10] Liangzhen Lai, Naveen Suda, and Vikas Chandra. 2018. Not all

ops are created equal! arXiv preprint arXiv:1801.04326 (2018).

https://doi.org/10.48550/arXiv.1801.04326

[11] Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hai-

long Yang, Zhongzhi Luan, Lin Gan, Guangwen Yang, and

Depei Qian. 2020. The deep learning compiler: A compre-

hensive survey. IEEE Transactions on Parallel and Distributed

Systems 32, 3 (2020), 708ś727. https://doi.org/10.1109/TPDS.

2020.3030548

[12] Arm Ltd. 2021. Arm Compute Library. https:

//developer.arm.com/ip-products/processors/machine-

learning/compute-library

[13] Trevor L McDonell, Manuel MT Chakravarty, Gabriele Keller,

and Ben Lippmeier. 2013. Optimising purely functional GPU

programs. ACM SIGPLAN Notices 48, 9 (2013), 49ś60. https:

//doi.org/10.1145/2500365.2500595

229

https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1109/CGO.2019.8661197
https://doi.org/10.48550/arXiv.1904.03383
https://doi.org/10.48550/arXiv.1904.03383
https://doi.org/10.5555/3291168.3291211
https://doi.org/10.1109/JPROC.2018.2873289
https://doi.org/10.1109/JPROC.2018.2873289
https://www.khronos.org/registry/OpenCL/sdk/2.2/docs/man/html/
https://www.khronos.org/registry/OpenCL/sdk/2.2/docs/man/html/
https://doi.org/10.1145/3168824
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.48550/arXiv.1801.04326
https://doi.org/10.1109/TPDS.2020.3030548
https://doi.org/10.1109/TPDS.2020.3030548
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://doi.org/10.1145/2500365.2500595
https://doi.org/10.1145/2500365.2500595


Mapping Parallelism in a Functional IR through Constraint Satisfaction CC ’22, April 02ś03, 2022, Seoul, South Korea

[14] Naums Mogers, Valentin Radu, Lu Li, Jack Turner, Michael

O’Boyle, and Christophe Dubach. 2020. Automatic gener-

ation of specialized direct convolutions for mobile GPUs.

In Proceedings of the 13th Annual Workshop on General Pur-

pose Processing using Graphics Processing Unit. 41ś50. https:

//doi.org/10.1145/3366428.3380771

[15] Phitchaya Mangpo Phothilimthana, Jason Ansel, Jonathan

Ragan-Kelley, and Saman Amarasinghe. 2013. Portable per-

formance on heterogeneous architectures. ACM SIGARCH

Computer Architecture News 41, 1 (2013), 431ś444. https:

//doi.org/10.1145/2451116.2451162

[16] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and John

Cavazos. 2008. Iterative optimization in the polyhedral model:

Part II, multidimensional time. ACM SIGPLAN Notices 43, 6

(2008), 90ś100. https://doi.org/10.1145/1379022.1375594

[17] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca.

2016. Choco solver documentation. TASC, INRIA Rennes, LINA

CNRS UMR 6241 (2016).

[18] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams,

Sylvain Paris, Frédo Durand, and Saman Amarasinghe. 2013.

Halide: a language and compiler for optimizing parallelism, lo-

cality, and recomputation in image processing pipelines. Acm

Sigplan Notices 48, 6 (2013), 519ś530. https://doi.org/10.1145/

2491956.2462176

[19] Karen Simonyan and Andrew Zisserman. 2014. Very deep con-

volutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556 (2014). https://doi.org/10.48550/arXiv.

1409.1556

[20] Michel Steuwer, Toomas Remmelg, and Christophe Dubach.

2016. Matrixmultiplication beyond auto-tuning: rewrite-based

GPU code generation. In Proceedings of the International Con-

ference on Compilers, Architectures and Synthesis for Embedded

Systems. 1ś10. https://doi.org/10.1145/2968455.2968521

[21] Michel Steuwer, Toomas Remmelg, and Christophe Dubach.

2017. Lift: a functional data-parallel IR for high-performance

GPU code generation. In 2017 IEEE/ACM International Sympo-

sium on Code Generation and Optimization (CGO). IEEE, 74ś85.

https://doi.org/10.1109/CGO.2017.7863730

[22] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodor-

idis, Priya Goyal, Zachary DeVito, William S Moses, Sven

Verdoolaege, Andrew Adams, and Albert Cohen. 2018. Tensor

comprehensions: Framework-agnostic high-performance ma-

chine learning abstractions. arXiv preprint arXiv:1802.04730

(2018). https://doi.org/10.48550/arXiv.1802.04730

[23] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, Jose Ig-

nacio Gomez, Christian Tenllado, and Francky Catthoor. 2013.

Polyhedral parallel code generation for CUDA. ACM Transac-

tions on Architecture and Code Optimization (TACO) 9, 4 (2013),

1ś23. https://doi.org/10.1145/2400682.2400713

[24] Tim Zerrell and Jeremy Bruestle. 2019. Stripe: Tensor com-

pilation via the nested polyhedral model. arXiv preprint

arXiv:1903.06498 (2019). https://doi.org/10.48550/arXiv.1903.

06498

[25] Lanmin Zheng and Tianqi Chen. 2018. Optimizing deep

learning workloads on ARM GPU with TVM. In Proceed-

ings of the 1st on Reproducible Quality-Efficient Systems Tour-

nament on Co-Designing Pareto-Efficient Deep Learning. 1.

https://doi.org/10.1145/3229762.3229764
[26] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,

Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang

Zhuo, Koushik Sen, et al. 2020. Ansor: Generating high-

performance tensor programs for deep learning. In 14th

{USENIX} Symposium on Operating Systems Design and Im-

plementation ({OSDI} 20). 863ś879. https://doi.org/10.5555/

3488766.3488815

230

https://doi.org/10.1145/3366428.3380771
https://doi.org/10.1145/3366428.3380771
https://doi.org/10.1145/2451116.2451162
https://doi.org/10.1145/2451116.2451162
https://doi.org/10.1145/1379022.1375594
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1145/2968455.2968521
https://doi.org/10.1109/CGO.2017.7863730
https://doi.org/10.48550/arXiv.1802.04730
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.48550/arXiv.1903.06498
https://doi.org/10.48550/arXiv.1903.06498
https://doi.org/10.1145/3229762.3229764
https://doi.org/10.5555/3488766.3488815
https://doi.org/10.5555/3488766.3488815

	Abstract
	1 Introduction
	2 Overview and Motivation
	3 Convolution in Lift
	3.1 Functional Expression of Direct Convolution
	3.2 Lift IR
	3.3 Rewriting

	4 Parallelization Constraint Generation
	4.1 Scheduling Choices
	4.2 Constraint Generation
	4.3 Memory Scoping Constraints
	4.4 Hierarchical Parallelism Constraints
	4.5 Sequential Map Fusion Heuristic
	4.6 Synchronizability

	5 Evaluation
	5.1 Experimental Methodology
	5.2 Results
	5.3 Parallelization Analysis
	5.4 Exploration Efficiency
	5.5 Sequential Map Fusion

	6 Related Work
	7 Conclusions
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-list (Meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results
	A.7 Experiment Customization

	References

