
Towards Mapping Lift To
Deep Neural Networks

▣ Naums Mogers
Aaron Smith, Dimitrios Vytiniotis

Michel Steuwer, Christophe Dubach
Ryota Tomioka

Convolution

▣ Many popular NN
architectures depend
on convolution

□ AlexNet (2012)

□ ZFNet(2013)

□ GoogleNet(2014)

□ VGGNet(2014)

□ ResNet(2015)

2

Runtime of convolution and other layers
(VGG measured on Mali GPU with clBLAS)

 Convolution Other layersConvolution Other layers

95%

Convolution: algorithms

▣ Stencils

▣ Im2col

▣ Fast Fourier transform

▣ Winograd

3

Convolution: stencils

4

Convolution: im2col

5
Image source: Loukadakis et al (2018)

X = Convolution
result

GEMM
Reduce(+)

6

5.42
MB

0.06
MB

0

1

2

3

4

5

6

im2col-processed input Stencil input

S
iz

e
Input image size in the two methods (1st layer of VGG)

GEMM in neural networks

▣ Both stencil and im2col methods for
convolution rely heavily on GEMM

▣ GEMM is also the basis of fully connected
layers
□ MLPs make for a large portion of server workloads

7

Hardware accelerators

GPUs FPGAs ASICs

8

Image source:
https://tomshardware.co.uk

Image source:
https://eetimes.com

Image source:
https://blogs.microsoft.com

Examples: TPU, BrainWave, DianNao, Huawei Da Vinci, Movidius Myriad

All accelerators feature:
Large memory
High bandwidth

Multidimensional
computational units

Compiling for hardware accelerators

▣ Multidimensional computational units are
exposed in instruction sets:
□ VVAdd32, VVAdd64
□ VVMul32, VVMul64, VVMul128
□ MVMul32, MVMul64, MVMul128

▣ Finding opportunities to use these primitives
is challenging

9

Compiling for hardware accelerators

▣ Using built-in primitives is made harder by:

□ Other optimisations
■ Parallelisation
■ Tiling (for limited shared memory)
■ Memory coalescing
■ Prefetching
■ (etc)

□ Individual device characteristics

10

Compiling for hardware accelerators

11

GEMM

Compiling for hardware accelerators

12

GEMM GEMMtiled

Questions:
Data contiguity

Efficient memory accesses

Data size

Data type

The problem

▣ Combine device-specific
operators optimally

▣ Design a performance
portable approach

▣ Automate and abstract the
process from the user

13

Lift: the approach

1. Separate algorithm (WHAT) from
implementation (HOW)

14

GEMM
imperative

GEMMfunctional

Lift: the approach

15

GEMM
optimised

GEMMfunctional

2. Detect and rewrite patterns

Lift in context

16

Current landscape

Lift in context

17

The goal

Lift in context

18

The focus of this talk

Lift: IR

▣ Data types
□ Int, Float8 / Float16 / Float32, Arrays

▣ Algorithmic patterns
□ Map, Slide, Reduce, Zip, Join, Split

▣ Address space operators
□ toChip, toDram, toOutput

▣ Arithmetic operators
□ ScalarAdd, VVAdd, MVAdd, MMAdd
□ ScalarMul, VVMul, MVMul, MMMul
□ VVRelu, VVTanh

19

Lift: example rewrite rules

20

Rewrite rule system
□ Generic and customisable
□ 3 levels: DSL, algorithmic, hardware
□ Extensible

Split-join rule Map fusion rule GEMV rule

21

?

A fully connected layer

Lift: rewriting

22

Lift: rewriting

23

Lift: rewriting

24

Lift: rewriting

Lift: rewriting

26

Lift: rewriting

27

Lift: rewriting

Lift: rewriting

29

Lift: rewriting

30

Lift: rewriting

Lift: rewriting

32

Lift: rewriting

33

Lift: rewriting

\

34

\

Lift: rewriting

35

Lift: rewriting

36

Lift: rewriting

Lift: rewriting

38

Lift: rewriting

Preliminary results

▣ Functional correctness on the BrainWave accelerator

▣ Performance measurements on Mali GPU

39

1

3.99

1.96
0.71

OpenBLAS clBLAS Lift Lift

R
el

at
iv

e
ru

n
ti

m
e

Average runtime of conv layers in VGG

im2col
(GPU)

im2col
(GPU)

stencils
(GPU)(CPU)

Future work

▣ Generation of both OpenCL kernel and host
runtime

▣ Performance evaluation on popular DNN
architectures

▣ Support for more hardware accelerators

40

