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Convolution

▣ Many popular NN 
architectures depend 
on convolution

□ AlexNet (2012)

□ ZFNet(2013)

□ GoogleNet(2014)

□ VGGNet(2014)

□ ResNet(2015)
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Convolution: algorithms

▣ Stencils

▣ Im2col

▣ Fast Fourier transform

▣ Winograd
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Convolution: stencils
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Convolution: im2col
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Image source: Loukadakis et al (2018)
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GEMM in neural networks

▣ Both stencil and im2col methods for 
convolution rely heavily on GEMM

▣ GEMM is also the basis of fully connected 
layers
□ MLPs make for a large portion of server workloads
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Hardware accelerators

GPUs FPGAs ASICs
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Image source:
https://tomshardware.co.uk

Image source:
https://eetimes.com

Image source:
https://blogs.microsoft.com

Examples: TPU, BrainWave, DianNao, Huawei Da Vinci, Movidius Myriad

All accelerators feature:
Large memory
High bandwidth

Multidimensional 
computational units



Compiling for hardware accelerators

▣ Multidimensional computational units are 
exposed in instruction sets:
□ VVAdd32, VVAdd64
□ VVMul32, VVMul64, VVMul128
□ MVMul32, MVMul64, MVMul128

▣ Finding opportunities to use these primitives 
is challenging
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Compiling for hardware accelerators

▣ Using built-in primitives is made harder by:

□ Other optimisations
■ Parallelisation
■ Tiling (for limited shared memory)
■ Memory coalescing
■ Prefetching
■ (etc)

□ Individual device characteristics
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Compiling for hardware accelerators
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GEMM



Compiling for hardware accelerators
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GEMM GEMMtiled

Questions:
Data contiguity

Efficient memory accesses

Data size

Data type



The problem

▣ Combine device-specific 
operators optimally

▣ Design a performance 
portable approach

▣ Automate and abstract the 
process from the user
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Lift: the approach

1. Separate algorithm (WHAT) from 
implementation (HOW)
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GEMM
imperative

GEMMfunctional



Lift: the approach
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GEMM
optimised

GEMMfunctional

2. Detect and rewrite patterns



Lift in context
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Current landscape



Lift in context

17

The goal



Lift in context
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The focus of this talk



Lift: IR

▣ Data types
□ Int, Float8 / Float16 / Float32, Arrays

▣ Algorithmic patterns
□ Map, Slide, Reduce, Zip, Join, Split

▣ Address space operators
□ toChip, toDram, toOutput

▣ Arithmetic operators
□ ScalarAdd, VVAdd, MVAdd, MMAdd
□ ScalarMul, VVMul, MVMul, MMMul
□ VVRelu, VVTanh
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Lift: example rewrite rules
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Rewrite rule system
□ Generic and customisable
□ 3 levels: DSL, algorithmic, hardware
□ Extensible

Split-join rule Map fusion rule GEMV rule
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?

A fully connected layer

Lift: rewriting
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Lift: rewriting
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Lift: rewriting
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Lift: rewriting



Lift: rewriting
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Lift: rewriting
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Lift: rewriting



Lift: rewriting
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Lift: rewriting
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Lift: rewriting



Lift: rewriting



32

Lift: rewriting
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Lift: rewriting

\
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Lift: rewriting



35

Lift: rewriting
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Lift: rewriting



Lift: rewriting
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Lift: rewriting



Preliminary results

▣ Functional correctness on the BrainWave accelerator

▣ Performance measurements on Mali GPU
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Future work

▣ Generation of both OpenCL kernel and host 
runtime

▣ Performance evaluation on popular DNN 
architectures

▣ Support for more hardware accelerators
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