Naums Mogers

Aaron Smith, Dimitrios Vytiniotis Michel Steuwer, Christophe Dubach Ryota Tomioka

Towards Mapping Lift To Deep Neural Networks

EPSRC Centre for Doctoral Training in Pervasive Parallelism

Convolution

- Many popular NN architectures depend on convolution
 - AlexNet ⁽²⁰¹²⁾
 - ZFNet⁽²⁰¹³⁾
 - GoogleNet⁽²⁰¹⁴⁾
 - VGGNet⁽²⁰¹⁴⁾
 - ResNet⁽²⁰¹⁵⁾

Runtime of convolution and other layers (VGG measured on Mali GPU with clBLAS)

Convolution: algorithms

Stencils

Im2col

Fast Fourier transform

Winograd

Convolution: stencils

Convolution: im2col

Input image size in the two methods (1st layer of VGG)

GEMM in neural networks

Both stencil and im2col methods for convolution rely heavily on GEMM

GEMM is also the basis of fully connected layers

MLPs make for a large portion of server workloads

Hardware accelerators

Image source: https://tomshardware.co.uk

FPGAs

Image source: https://eetimes.com

ASICs

Image source: https://blogs.microsoft.com

Examples: TPU, BrainWave, DianNao, Huawei Da Vinci, Movidius Myriad

All accelerators feature:

Large memory High bandwidth Multidimensional computational units

Multidimensional computational units are exposed in instruction sets:

- \Box VVAdd32, VVAdd64
- □ VVMul32, VVMul64, VVMul128
- □ MVMul32, MVMul64, MVMul128

Finding opportunities to use these primitives is challenging

Using built-in primitives is made harder by:

Other optimisations

- Parallelisation
- Tiling (for limited shared memory)
- Memory coalescing
- Prefetching
- *(etc)*

Individual device characteristics

GEMM

GEMM

Questions:

Data contiguity

Data size

Efficient memory accesses

Data type

The problem

- Combine device-specific operators optimally
- Design a performance portable approach
- Automate and abstract the process from the user

Lift: the approach

1. Separate algorithm (WHAT) from implementation (HOW)

GEMM

Lift: the approach

2. Detect and rewrite patterns

Lift in context

Current landscape

Lift in context

Lift in context

The focus of this talk

Lift: IR

Data types

Int, Float8 / Float16 / Float32, Arrays

Algorithmic patterns

Map, Slide, Reduce, Zip, Join, Split

Address space operators

toChip, toDram, toOutput

Arithmetic operators

- ScalarAdd, VVAdd, MVAdd, MMAdd
- ScalarMul, VVMul, MVMul, MMMul
- VVRelu, VVTanh

Lift: example rewrite rules

Rewrite rule system

- Generic and customisable
- 3 levels: DSL, algorithmic, hardware
- Extensible

A fully connected layer

```
1 for (int i = 0; i < n_neurons; i++) {
2  for (int j = 0; j < x_length; j++) {
3    temp[j + x_length*i] =
4         X[j] * W[j + x_length*i];
5    }
6
7  OUT[i] = B[i];
8  for (int j = 0; j < x_length; j++) {
9    OUT[j] += temp[j + x_length*i];
10    }
11 }</pre>
```


1 temp = MVMul(W, X); 2 OUT = VVAdd(temp, B);

2 W,

3 B) >>

- 4 Map((neuronW, neuronB) =>
- 5 VVMul(neuronW, toChip(X)) >>
- 6 Reduce(ScalarAdd, neuronB)) >>
- 7 VVRelu() >> toOutput()

Ŧ

1 Zip(

- 2 W,
- 3 B) >>
- 4 Map((neuronW, neuronB) =>
- 5 VVMul(neuronW, toChip(X)) >>
- 6 Reduce(ScalarAdd, neuronB)) >>
- 7 VVRelu() >> toOutput()

// GEMV rewrite
matrix >> Map(row =>
 VVMul(row, vector) >>
 Reduce(ScalarAdd, 0))
 I I I
MVMul(matrix, vector)

1 Zip(

- 2 W,
- 3 B) >>
- 4 Map((neuronW, neuronB) =>
- 5 VVMul(neuronW, toChip(X)) >>
- 6 Reduce(ScalarAdd, neuronB); >>
- 7 VVRelu() >> toOutput()

<Extract Initializer From Reduce>

12 }

1 Zip(

2 W,

3 B) >>

4 Map((neuronW, neuronB) =>

- 5 VVMul(neuronW, toChip(X)) >>
- 6 Reduce(ScalarAdd, 0) >>
- 7 ScalarAdd(neuronB)) >>

```
8 VVRelu() >> toOutput()
```

```
1 for (int i = 0; i < n_neurons; i++) {
2  for (int j = 0; j < x_length; j++) {
3    temp[j + x_length*i] =
4         X[j] * W[j + x_length*i];
5    }
6
7  OUT[i] = 0;
8  for (int j = 0; j < x_length; j++) {
9      OUT[j] += temp[j + x_length*i];
10    }
11  OUT[i] += B[i];
12 }</pre>
```



```
1 for (int i = 0; i < n_neurons; i++) {
2  for (int j = 0; j < x_length; j++) {
3    temp[j + x_length*i] =
4         X[j] * W[j + x_length*i];
5    }
6
7  OUT[i] = 0;
8  for (int j = 0; j < x_length; j++) {
9      OUT[j] += temp[j + x_length*i];
10    }
11  OUT[i] += B[i];
12 }</pre>
```

<Map fission>


```
1 for (int i = 0; i < n_neurons; i++) {
    for (int j = 0; j < x_length; j++) {</pre>
    temp[j + x_length*i] =
        X[j] * W[j + x_length*i];
    }
6 }
7 for (int i = 0; i < n_neurons; i++) {</pre>
     OUT[i] = 0;
    for (int j = 0; j < x_length; j++) {</pre>
       OUT[j] += temp[j + x_length*i];
10
     }
11
12
    OUT[i] += B[i];
13 }
```



```
1 for (int i = 0; i < n_neurons; i++) {
    for (int j = 0; j < x_length; j++) {</pre>
    temp[j + x_length*i] =
        X[i] * W[i + x_length*i];
    }
6 }
7 for (int i = 0; i < n_neurons; i++) {</pre>
     OUT[i] = 0;
    for (int j = 0; j < x_length; j++) {</pre>
       OUT[j] += temp[j + x_length*i];
10
     }
11
12
     OUT[i] += B[i];
13 }
```

<A couple rewrites later...>


```
1 for (int i = 0; i < n_neurons; i++) {
2  for (int j = 0; j < x_length; j++) {
3    temp[j + x_length*i] =
4         X[j] * W[j + x_length*i];
5    }
6    OUT[i] = 0;
7    for (int j = 0; j < x_length; j++) {
8        OUT[j] += temp[j + x_length*i];
9    }
10 }
11 for (int i = 0; i < n_neurons; i++) {
12    OUT[i] += B[i];
13 }</pre>
```



```
1 for (int i = 0; i < n_neurons; i++) {
2   for (int j = 0; j < x_length; j++) {
3     temp[j + x_length*i] =
4         X[j] * W[j + x_length*i];
5   }
6   OUT[i] = 0;
7   for (int j = 0; j < x_length; j++) {
8       OUT[j] += temp[j + x_length*i];
9   }
10 }
11 for (int i = 0; i < n_neurons; i++) {
12   OUT[i] += B[i];
13 }</pre>
```



```
1 Zip(
2 MVMul(W, X >> toChip)
3 B) >>
4 Map((neuronWXreduced, neuronB) =>
5 neuronWXreduced >>
6 ScalarAdd(neuronB)) >>
7 VVRelu() >> toOutput()
```

```
1 temp = MVMul(W, X);
2 for (int i = 0; i < n_neurons; i++) {
3     OUT[i] += B[i];
4 }</pre>
```



```
1 temp = MVMul(W, X);
2 for (int i = 0; i < n_neurons; i++) {
3     OUT[i] += B[i];
4 }</pre>
```

< Vectorise Map-Zip >

1 temp = MVMul(W, X);
2 for (int i = 0; i < n_neurons; i++) {
3 OUT[i] += B[i];
4 }</pre>

1 temp = MVMul(W, X);
2 OUT = VVAdd(temp, B);

1 VVAdd(
2 MVMul(W, X >> toChip)
3 B) >>
4 VVRelu() >> toOutput()

1 temp = MVMul(W, X); 2 OUT = VVAdd(temp, B);

Preliminary results

Functional correctness on the BrainWave accelerator

Performance measurements on Mali GPU

Average runtime of conv layers in VGG

Future work

Generation of both OpenCL kernel and host runtime

Performance evaluation on popular DNN architectures

Support for more hardware accelerators