
H’

hx
*+

w
*+

c

hx
*+

w

hx

tile

w

tile

HX

Wb

hx
*+

w
*+

hx
*+

w

wb

cell

*+

hx

tile

w

tile

H’

c

HX

Wb

hx
*+

w

hx
*+

w

hx
*+

w

hx
*+

w

wb

cell

*+

pipe.reduce

seq.foreach

fork-join.reduce

seq.foreach

(x, h, c, w, b) >>
 mapAccum(forkJoin.reduce)

(x, h, c, w, b) >>
 mapAccum(pipe.reduce)

lstm: ((x, h, c, w, b) >>
 mapAccum(reduce))

CASE STUDY: LSTM OPTIMISATION

e >> f >> g >>h

e >>
toSRAM >>

accel(f >> g) >>
toDRAM >>

h

map(f: A → B)

f’: [A] → [B]

reduce

split(s) >>
map(reduce) >>

reduce

data >> load/store

sequential in bursts
toDRAM toStreamtoSRAM

toLUT

toReg toStacktoRegFile

split(s) >> .. >> Map(f)reduce

sequential
reduce

streamed
reduce

fork-join
reduce

pipelined
reduce

IR TRANSFORMATIONS

generic

Spatial lang

high-level
expressive

ASIC

CGRA
FPGA3. Compile to HDL that is and supports

Rewrite Rules Tuning parameter
constraint inference

2. Leverage rich AST within the compiler to generate a
 search space of designs through:

1. Express applications with high-level functional patterns

M
E

TH
O

D
O

LO
G

Y

3. An automatic approach to designing versatile
 HW accelerators is needed

2. It is hard to design accelerators that extract parallelism
 efficiently across problem domains and dimensions

DNNs

ASIC

SLAM GraphsISP

VGG LSTM

FPGA CGRA

ResNet

Lift language

1. Compute-intensive apps need to be HW-accelerated

M
O

TI
V

A
TI

O
N

Accelerator Design Optimization
Using A Functional Data-Parallel Language
Naums Mogers

Supported by

