
This thesis has been submitted in fulfilment of the requirements for a

postgraduate degree (e. g. PhD, MPhil, DClinPsychol) at the University of

Edinburgh. Please note the following terms and conditions of use:

This work is protected by copyright and other intellectual property rights,

which are retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or

study, without prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without

first obtaining permission in writing from the author.

The content must not be changed in any way or sold commercially in

any format or medium without the formal permission of the author.

When referring to this work, full bibliographic details including the

author, title, awarding institution and date of the thesis must be given.

Guided Rewriting and Constraint Satisfaction

for Parallel GPU Code Generation

Naums Mogers
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

The University of Edinburgh

2023

Abstract

Graphics Processing Units (GPUs) are notoriously hard to optimise for manually due

to their scheduling and memory hierarchies. What is needed are good automatic code

generators and optimisers for such parallel hardware. Functional approaches such as

Accelerate, Futhark and LIFT leverage a high-level algorithmic Intermediate Represen-

tation (IR) to expose parallelism and abstract the implementation details away from the

user. However, producing efficient code for a given accelerator remains challenging.

Existing code generators depend on the user input to choose a subset of hard-coded op-

timizations or automated exploration of the implementation search space. The former

suffers from the lack of extensibility, while the latter is too costly due to the size of the

search space. A hybrid approach is needed, where a space of valid implementations is

built automatically and explored with the aid of human expertise.

This thesis presents a solution combining user-guided rewriting and automatically

generated constraints to produce high-performance code. The first contribution is an

automatic tuning technique to find a balance between performance and memory con-

sumption. Leveraging its functional patterns, the LIFT compiler is empowered to infer

tuning constraints and limit the search to valid tuning combinations only.

Next, the thesis reframes parallelisation as a constraint satisfaction problem. Par-

allelisation constraints are extracted automatically from the input expression, and a

solver is used to identify valid rewriting. The constraints truncate the search space to

valid parallel mappings only by capturing the scheduling restrictions of the GPU in the

context of a given program. A synchronisation barrier insertion technique is proposed

to prevent data races and improve the efficiency of the generated parallel mappings.

The final contribution of this thesis is the guided rewriting method, where the user

encodes a design space of structural transformations using high-level IR nodes called

rewrite points. These strongly typed pragmas express macro rewrites and expose de-

sign choices as explorable parameters. The thesis proposes a small set of reusable

rewrite points to achieve tiling, cache locality, data reuse and memory optimisation.

A comparison with the vendor-provided handwritten kernel library ARM Compute

and the TVM code generator demonstrates the effectiveness of this thesis’ contribu-

tions. With convolution as a use case, LIFT-generated direct and GEMM-based convo-

lution implementations are shown to perform on par with the state-of-the-art solutions

on a mobile GPU. Overall, this thesis demonstrates that a functional IR yields well to

user-guided and automatic rewriting for high-performance code generation.

iii

Lay Summary

Graphics Processing Units (GPUs) are special-purpose processors initially designed to

compute the colour of the pixels on the computer screen. GPUs are uniquely suited

to perform many operations in parallel instead of sequentially, as is more prevalent in

general-purpose computer processors. This capability motivated their adoption in other

applications, such as machine learning, which are computed much faster in parallel.

Producing programming code for parallel processors is challenging. Manual devel-

opment results in the fastest software but requires expertise in programming a specific

processor. Reusing programs from software libraries written by experts shifts the bur-

den onto the library developers to keep producing programs for new applications and

processors.

Automatic code generation has been used to produce custom-tailored programs

for specific processors. However, code generators struggle to solve many problems

involved in developing correct and efficient parallel code. The popular approaches rely

either on an engineer to hard-code their expertise into code generators, or mechanically

try many possible versions of the same program to find the best one. The former

approach is too expensive to maintain for new platforms and applications. The latter

takes too long.

This thesis proposes techniques to address the problems of both approaches and

combine them in a single system. The explorative approach has been improved to

detect program variants that produce incorrect results. By avoiding these candidates,

the code generator takes less time to find efficient programs. The manual approach has

been improved by providing human experts with a way to guide the code generator in

broad strokes in optimising a program without overconstraining the system to a specific

processor.

The techniques presented in this thesis are based on a particular way to repre-

sent the application called functional programming. Functional expression captures

the user’s intent, helping the code generator optimise the program without deviating

from the original purpose of the computation. This thesis argues that representing the

applications in such a way helps solve the issue of parallel processor programmability.

iv

Acknowledgements

I want to thank my adviser Christophe Dubach for his guidance throughout my studies.

I have been continuously motivated by his curiosity; he has gone above and beyond in

shaping my research path.

I am grateful to the entire Lift team, a welcoming bunch. Thank you to Michel

Steuwer, who makes you feel included and is always there to help. Among others,

Toomas Remmelg’s work on the Lift compiler has been fundamental to my project, and

I am grateful for his assistance in the early stages. Larisa Stoltzfus, Christof Schlaak

and Lu Li have been fantastic to work with. Long chats with Federico Pizzuti have

elevated my days as a PhD student; befriend the man if you get a chance.

I have appreciated the friendly and supportive environment created by the School

of Informatics members. Many thanks to Murray Cole, Rodrigo Caetano de Oliveira

Rocha, Patrick Hudson, Karen Pinto-Csaszar, Valentin Radu, and Gregor Hall, among

many others.

This work was supported by the Engineering and Physical Sciences Research Coun-

cil (grant EP/L01503X/1), EPSRC Centre for Doctoral Training in Pervasive Paral-

lelism at the University of Edinburgh, School of Informatics. The work has made use

of resources provided by the Edinburgh Compute and Data Facility.

The privilege of pursuing a PhD was given to me by my parents Jevgenija Vetsteina-

Mogere and Ilja Mogers. From inspiring me to challenge myself to, let’s be honest,

helping me with my school homework, they have supported me unconditionally all the

way. I do what I do because of them.

Finally, I can’t help but thank my partner Tân Nazaré, not only because they men-

tioned me in their thesis but for keeping my sanity throughout this project. They’ve

gone to great lengths to support me when it mattered most, and this thesis was finished

thanks to them. But do not hold them accountable for the consequences of this work.

v

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

Some of the material used in this thesis has been published in the following papers:

• Naums Mogers, Valentin Radu, Lu Li, Jack Turner, Michael O’Boyle, and Christophe

Dubach. “Automatic generation of specialized direct convolutions for mobile

GPUs”. In: Proceedings of the 13th Annual Workshop on General Purpose Pro-

cessing using Graphics Processing Unit. 2020, pages 41–50. DOI: 10.1145/

3366428.3380771. This study was conceived by all of the authors. I carried out

the implementation of the proposed techniques in the LIFT compiler and wrote

the overwhelming majority of the publication’s text.

• Naums Mogers, Lu Li, Valentin Radu, and Christophe Dubach. “Mapping par-

allelism in a functional IR through constraint satisfaction: a case study on con-

volution for mobile GPUs”. In: Proceedings of the 31st ACM SIGPLAN Inter-

national Conference on Compiler Construction. 2022, pages 218–230. I car-

ried out the design of the language features, the implementation of the proposed

techniques in the LIFT compiler and wrote the overwhelming majority of the

publication’s text.

(Naums Mogers)

vi

https://doi.org/10.1145/3366428.3380771
https://doi.org/10.1145/3366428.3380771

Table of Contents

1 Introduction 1

1.1 The Programmability Challenge . 2

1.1.1 Separation of Concern . 2

1.1.2 Automatic Code Generation 3

1.2 Contributions . 4

1.3 Thesis Outline . 6

2 Background 9

2.1 Convolution . 10

2.1.1 General Matrix Multiply . 11

2.1.2 Direct Convolution . 12

2.1.3 Memory Footprint . 12

2.2 GPU Programming . 14

2.2.1 GPU Architecture . 14

2.2.2 OpenCL Programming Model 16

2.3 LIFT . 19

2.3.1 The LIFT Language . 19

2.3.2 The LIFT Compiler . 28

2.4 Summary . 35

3 Related Work 37

3.1 Explicitly Parallel Approaches to GPU Programming 38

3.1.1 Low-Level Parallel APIs . 38

3.1.2 Kernel Libraries . 40

3.2 Implicit Parallelism for Code Generation 41

3.2.1 Automatic Extraction of Parallelism 41

3.2.2 Algorithmic Skeletons . 43

vii

3.2.3 Computational Graphs . 44

3.2.4 Functional IRs . 46

3.3 Parallel Code Optimisation . 47

3.3.1 Synchronisation Optimisation 47

3.3.2 Auto-Tuning . 48

3.3.3 Constraint-Based Parallelisation 49

3.3.4 User-Guided Optimisation 50

3.4 Summary . 52

4 Functional IR for Auto-Tuning 53
4.1 Introduction . 53

4.2 Optimising Convolution in LIFT . 56

4.2.1 High-level LIFT Expression 57

4.2.2 Optimisations of Convolution on a GPU 58

4.2.3 Low-level Optimisations in a Functional IR 61

4.2.4 Low-Level LIFT Expression 64

4.2.5 Tuning Parameters . 69

4.3 Constraint Inference . 71

4.3.1 Constraint Types . 72

4.3.2 Constraint Solver . 73

4.3.3 Search Space Simplification 73

4.4 Memory Allocation . 77

4.4.1 Intermediate Versus Output Buffers 78

4.4.2 Intermediate Buffer Reuse 80

4.5 Evaluation . 81

4.5.1 Experimental Methodology 81

4.5.2 Comparison with ARM Compute Library 83

4.5.3 Multi-objective Optimisation 84

4.5.4 Analysis of the Best Point 85

4.6 Summary . 86

5 Parallelism Mapping Through Constraint Satisfaction 89
5.1 Introduction . 89

5.2 Overview and Motivation . 91

5.2.1 The Input Program . 92

5.2.2 Challenge of Mapping Parallelism 93

viii

5.3 Parallelisation Constraint Generation 95

5.3.1 Map Scheduling Choices . 96

5.3.2 Constraint Generation . 97

5.3.3 Memory Scoping Constraints 98

5.3.4 Hierarchical Parallelism Constraints 101

5.3.5 Sequential Map Fusion Heuristic 103

5.3.6 Synchronisability . 103

5.4 Synchronisation Barrier Insertion . 104

5.4.1 Memory Access Graph Construction 107

5.4.2 Critical Path Detection . 108

5.5 Evaluation . 111

5.5.1 Experimental Methodology 111

5.5.2 Results . 113

5.5.3 Parallelisation Analysis . 114

5.5.4 Exploration Efficiency . 114

5.5.5 Sequential Map Fusion . 116

5.5.6 Barrier Insertion . 117

5.6 Summary . 118

6 Towards Guided Rewriting 121

6.1 Introduction . 121

6.2 Rewrite Points . 124

6.2.1 Definition . 125

6.2.2 Nesting . 127

6.2.3 Application . 127

6.2.4 High-level Convolution, Annotated 131

6.2.5 Expressing Optimisations Through Rewriting Points 137

6.2.6 Summary . 153

6.3 Evaluation . 153

6.3.1 Experimental Methodology 154

6.3.2 Performance and Memory Consumption 156

6.3.3 Runtime Breakdown . 158

6.3.4 Design Choices . 160

6.3.5 Rewrite Point Generalisability 164

6.3.6 Search Space . 166

ix

6.4 Summary . 166

7 Conclusions 169
7.1 Summary of Contributions . 169

7.1.1 Functional IR for Auto-Tuning 169

7.1.2 Parallelism Mapping Through Constraint Satisfaction 170

7.1.3 Guided Rewriting . 171

7.2 Critical Analysis . 171

7.2.1 Redundant Space Pruning 171

7.2.2 Synchronisability-Based Space Pruning 172

7.2.3 Multi-Stage Rewrite Point Application 173

7.2.4 Rewrite Point DSL . 173

7.3 Future Work . 174

7.4 Summary . 175

x

Chapter 1

Introduction

Recent decades saw a shift in hardware design towards increasing the complexity of

processing units from single-chip to multicore architectures. The industry has acted

so in response to the “power wall” [Asa06] – the increased costs of performance scal-

ing through transistor density increase. Battery costs in mobile devices, data centre

energy consumption and heat dissipation challenges have motivated distributing the

computational resources across multiple cores [Bos11].

The fundamental shift in computational resource parallelisation coincided with the

specialisation of hardware units. Graphics processing, machine learning and network-

ing applications have fueled the development of massively parallel GPUs, ASICs and

FPGAs. The resulting platforms often combine multiple architectures within the same

system to allow offloading domain-specific computations to dedicated accelerators.

GPUs gained widespread availability due to the pervasiveness of graphics process-

ing. The GPU chips feature multiple Streaming Multiprocessor cores (SMs) with many

floating-point Arithmetic Logic Units (ALUs) and large memories. This architecture

proved a good fit outside of its original domain for the applications requiring a large

number of independent arithmetic operations and little context switching.

Meanwhile, the computational demand has grown due to the advent of increasingly

resource-intensive applications such as Machine Learning (ML), computer vision and

scientific computing. ML alone has been used for speech recognition [Col11], senti-

ment analysis [Dos14], sentence modelling [Kal14] and visual classification [Sim14].

With practical adoption of these methods predicated on utilising accelerators such as

GPUs, parallel programming transitioned from the toolset of systems engineers to that

of the application developers.

However, parallelising computation has unique challenges not often encountered in

1

2 Chapter 1. Introduction

sequential programming. Efficient task partitioning and scheduling, distributed mem-

ory management and synchronisation are some of the problems that need to be ad-

dressed. For software engineers, these challenges ended the free performance lunch [Sut05],

which promised applications regular performance improvements through increasing

CPU clock speeds and memory and disk access rates. The increase in the computa-

tional capability of the platform has ceased to improve performance unless the software

is well-parallelised and tailored to the hardware architecture [Wan18]. Expertise in par-

allel programming is required to avoid resource underutilisation, deadlocks, livelocks

and race conditions. The programmability of the GPU has to be improved to lower the

barrier of entry into parallel computation.

1.1 The Programmability Challenge

Hardware vendors addressed the computational demand by exposing the scheduling

and memory management functionality through parallel programming models such as

CUDA [Nic08] and OpenCL [Khr22]. These interfaces are sufficiently fine-grained to

enable high processor and cache utilisation through tiling, vectorisation and memory

coalescing. However, architectural differences among parallel accelerators restrict the

efficiency and correctness of low-level implementations to a small set of platforms.

Manually porting software across platforms, therefore, incurs high development costs.

This rigidity has been addressed by decoupling the problem specification from the

implementation.

1.1.1 Separation of Concern

Two high-level programming approaches have emerged: static optimised kernel li-

braries and automated code generation. Handwritten kernel libraries provide suites

of target-specific implementations of popular algebraic [Nvi07; Wha01; Xia12] and

domain-specific [Che14; Arm21; Kha19] procedures. This approach shifts most of the

optimisational burden from the user to the library developers.

This thesis tackles automated code generation, which has been used to achieve high

performance across multiple platforms at a fraction of the cost of manual development.

Code generators pursue performance portability through high-level Intermediate Rep-

resentations (IRs).

High-level IRs expose implicit parallelism in the application without specifying

1.1. The Programmability Challenge 3

a particular scheduling policy. Relaxed representation allows the compiler to switch

between parallel programming models based on the target platform. These IRs are

also sufficiently expressive to capture the algorithmic intent of the user. Rich algorith-

mic representation encodes the information required to alter the program’s structure

safely. Data dependencies, expressive types and high-level iteration space characteris-

tics allow the compiler to partition and reorder the computations without breaking the

program semantics.

Several high-level programming abstractions have been proposed to capture algo-

rithmic properties useful for automatic code generation. Algorithmic skeleton [Col89;

Col04] frameworks expose high-level computation patterns such as map, reduce and

scan to the user as C++ templates [Dea08; Ald11; Ste11]. Platform-specific programs

are generated automatically by embedding user-provided functions into the parallel

implementations of the user-chosen algorithmic skeletons. However, the successful

application of algorithmic skeletons is limited by the front-end languages of the skele-

ton libraries. This limitation motivated the development of IRs, where the language

captures the implicit parallelism as part of the programming model.

Computational graphs [Lea17; Wei17; Rot18; Cyp18] and functional patterns [Hen17;

McD13; Ste17] have been successfully used to capture implicit parallelism. These

programming abstractions enable radical program transformations that would other-

wise require expensive static analysis: operation fusion, tiling, access coalescing, and

automatic tuning. With such expressive power comes the curse of dimensionality: the

design space of alternative implementations for each program is so large that finding

efficient candidates is prohibitively expensive. We now look into the automated rea-

soning techniques that optimise parallel code with varying design space coverage and

search efficiency.

1.1.2 Automatic Code Generation

Polyhedral compilers exploit loop-level parallelism [Ver13; Vas18; Bag19]. They de-

rive the geometric representation of the iteration space and parallelise loops using

linear algebra transformations. Although these approaches produce highly efficient

kernels, the polyhedral model is unsuitable for problems that depend on non-affine

loops [Pre19].

Accelerate [McD13], Futhark [Hen17], LIFT [Ste17] and Spiral [Fra18] use auto-

mated rewriting systems to tailor programs to the target platforms. These approaches

4 Chapter 1. Introduction

leverage the advantages of the functional representation: limited side effects, strong

dependent type systems and functional patterns. Although these systems eventually

generate high-performance solutions, finding optimal solutions takes a long time.

PetaBricks [Pho13] and Tangram [Cha16; De 19] avoid long search times by de-

pending on the user to define the algorithm and provide alternative implementations.

Similarly, TVM users define the optimisations using Halide schedules [Che18b; Ada19;

Zhe20a]. These approaches either put too much pressure on the user to provide good

initial choices [Sot19] or overconstrain the heuristic search through strong assumptions

about the target hardware.

Another challenge with automated design space exploration is ensuring the trans-

formation correctness. This applies to auto-tuning of the numeric parameters [Ans14],

parallel mapping search [Zhe20a] and algorithmic transformations [Pho13]. Avoid-

ing invalid transformations is essential to ensure the preservation of the input program

semantics and to avoid spending time evaluating incorrect candidates.

Despite the advances in automatic parallelisation methods, finding a balance be-

tween mechanic exploration and informed optimisation remains an open problem.

The former delivers extensive design coverage, while the latter finds optimal solu-

tions faster. This thesis tackles the challenge of balancing explorative and heuristic

code generation methods. For automatic tuning and parallelisation, it proposes two

techniques to detect invalid implementations early and restrict the exploration to valid

implementations only. For algorithmic transformations, the thesis proposes a way to

incorporate user expertise in the optimisation process without sacrificing design space

coverage.

1.2 Contributions

This thesis tackles several challenges in parallel code generation. Firstly, it addresses

the need to avoid the evaluation of invalid implementations during auto-tuning. Sec-

ondly, it proposes a way to capture the parallel programming model of a given plat-

form to generate a space of valid parallel mappings automatically. Finally, it provides

a high-level optimisational abstraction for the user to outline a large space of structural

program transformations.

This work leverages the functional data-parallel language and compiler LIFT. The

proposed techniques are demonstrated using Convolutional Neural Networks (CNNs)

on mobile GPUs as a case study. This choice is motivated by the challenges of opti-

1.2. Contributions 5

mising a complex application on a resource-constrained platform. Applications with

non-straightforward memory access patterns highlight the limitations of static code

analysis due to non-obvious data dependencies and obscured high-level algorithms.

Platforms with fewer computational resources – e.g., mobile GPUs prioritising power

efficiency at the expense of the operating memory – limit the choice of available op-

timisations. A memory-bound application on a resource-constrained platform makes

for a challenging optimisation target.

Specifically, the following contributions are made:

Auto-tuning The thesis shows how tuning constraints are automatically inferred from

strongly typed functional patterns to tune computational kernels automatically. This

addresses the combinatorial explosion problem during design space exploration by

leveraging a functional IR to constrain the search. The thesis discusses how search

optimisation can be leveraged to explore the trade-off between performance and mem-

ory consumption. The technique is shown to produce code automatically for direct

convolution, exploring a large optimisation space of 1,000 points with LIFT, where

the best candidate achieves a speedup of 10× and memory saving of ×3.6 over the

vendor-provided ARM Compute Library on the ARM Mali GPU.

Parallelism Mapping To address the need for automatic code parallelisation, the the-

sis reformulates parallelisation mapping as a constraint satisfaction problem. Specifi-

cally, it proposes a technique to generate parallelisation constraints specific to a given

program. These constraints restrict the search to the parallel mappings valid in a given

parallel programming model. Also proposed is a synchronisation barrier insertion

method to avoid data races and reduce the synchronisation overheads in the gener-

ated programs. Generated programs are shown to achieve performance on par with the

state-of-the-art code generator TVM [Che18a] with memory savings of more than 2×.

Guided Rewriting A user-guided parametric rewriting mechanism is proposed to

address the need for a way to inject loosely-defined heuristics into the search. This

work focuses on encoding good design choices directly in the IR without burdening

the user with low-level implementational details and overconstraining the problem.

With a small set of rewrite points, a single convolution expression is used to express

two convolution methods, tiling, prefetching, data reuse, memory optimisation, access

coalescing and OpenCL kernel fission. The compiler uses the rewrite points to create

6 Chapter 1. Introduction

new parallelisation and tuning opportunities automatically. The generated GEMM-

based convolution implementations achieve 78% performance of the hand-optimised

ARM Compute kernels.

1.3 Thesis Outline

The rest of this thesis is organised as follows:

Chapter 2 presents the technical background on the convolutional layers of CNNs;

GPU programming and the OpenCL programming model in particular; the functional

data-parallel language and compiler LIFT, which targets OpenCL and is used to im-

plement the techniques proposed in this thesis with convolution as a use case.

Chapter 3 critically discusses related work in GPU code generation. It describes the

explicitly parallel approaches, which are based on low-level programming abstractions

or optimised kernel libraries. It also introduces ways to detect and capture implicit par-

allelism in applications and covers the relevant parallel code optimisation techniques.

Chapter 4 provides a novel account of expressing low-level convolution optimisa-

tions in a high-level functional IR of LIFT. It describes a tuning constraint inference

technique based on functional patterns. The chapter shows how constraints restrict

the tuning search to valid implementations and showcase the results of multi-objective

search-based optimisation. The chapter also discusses improvements of the LIFT mem-

ory allocation method to optimise intermediate memory buffers.

Chapter 5 describes the proposed automatic parallelisation technique based on con-

straint satisfaction. It provides a detailed account of expressing OpenCL programming

model restrictions as arithmetic constraints. The constraints are generated automat-

ically based on the LIFT IR. This work shows that functional patterns both expose

plenty of parallelism and enable safe parallelisation. The chapter also describes a syn-

chronisation barrier insertion method which leverages functional representation to find

correct and efficient barrier placements.

Chapter 6 extends the language with rewrite points as a way for the user to guide

the optimisation process. The chapter defines the rewrite points from the user’s per-

1.3. Thesis Outline 7

spective – as an IR primitive – and from the compiler engineer’s perspective – as a

parametric optimisation interface. The chapter describes how the compiler applies

rewrite points in the top-down rewriting process to transform the expression; it then

defines eleven rewrite points, which are used to encode a large design space on the

example of convolution. The chapter analyses the generated implementations of direct

and GEMM-based convolution and shows that one set of rewrite points encodes good

choices for both convolution algorithms.

Chapter 7 concludes the thesis with a critical analysis of its contributions. The chapter

highlights the limitations of the proposed techniques and suggests avenues for future

work.

Chapter 2

Background

This chapter provides the background information required for the rest of this thesis.

Three topics of interest are covered. The first section introduces convolution – the

core operation of a CNN and the main use case of this thesis. Due to its high com-

putational and memory requirements, convolution provides an interesting challenge

for optimising code generation. The section provides two popular algorithms used to

perform convolution and discusses their differences. Since one algorithm is preferable

for low memory budgets, and the other – for high-bandwidth requirements – both are

worthwhile optimisation targets.

The second section discusses GPUs as a target platform for high-performance ap-

plications. GPU is the target platform of the code generation techniques presented in

this thesis. An overview of memory and execution models is provided, paving the way

for the discussion of hardware-specific optimisation methods in the later chapters. The

section then focuses on OpenCL – an open standard for parallel programming het-

erogeneous systems including GPUs [Khr22]. The functional portability of OpenCL

makes it a good target language for code generation; OpenCL’s lack of performance

portability motivates further efforts on automatic optimisation methods.

Finally, the chapter introduces LIFT – a functional data-parallel language and a

compiler used to demonstrate the contributions of this thesis. The chapter discusses

the type system and the two levels of the LIFT IR. We will see in the later chapters

how beneficial a rich algorithmic representation is for automatic code generation; an

overview of LIFT IR forms the basis of this argument. A brief overview of the LIFT

compiler internals helps understand the proposed static analysis methods. LIFT code

generation is demonstrated with an example program; the chapter closes with a discus-

sion of the limitations of the current approach motivating the rest of the thesis.

9

10 Chapter 2. Background

20 1

10 0

0-1 0
20 1

10 1

0-1 0
20 0

0-1 -1

0-1 -1

-41 0

10 -1

10 -1
-41 -1

10 2

10 2
-41 0

10 1

10 0

M

Image Kernel

ch
an

ne
ls

Figure 2.1: Convolutional layer stacking M kernels to be convoluted over a three

channel-image by sliding the kernels over the image – direct convolution. Photo

from [Win08].

2.1 Convolution

CNNs are the tool of choice for most computer vision problems such as classification

and segmentation. They are composed of stacked layers of convolutions over multi-

channel inputs. Each input is expressed as Cin channels of 2D images and produces

Cout output channels, as illustrated in Figure 2.1. Each output channel contains a fea-

ture map – a tensor characterising the spatial distribution of visual features in the input

image. Feature maps are produced by sliding convolutional kernels across the spa-

tial dimensions of the image. Kernels contain weights encoding features. Each slided

window is convolved with the kernel weights by multiplying pixel values and corre-

sponding weights across all input channels. An output value is produced by summing

all weighted values of the slided window. The weights of the kernels are said to be

learnable and are usually optimised by gradient descent over convex objective func-

tions.

In computer vision, the first image passed to a convolutional neural network has

three channels: red, green and blue. They get transformed in scale and value based

on the learned kernel weights at each layer, traversing the network of several convo-

lutional layers. The set of Cout output feature maps is passed as an input to the next

convolutional layer, until the end of the network. For classification tasks, the outputs

of convolutional layers – feature maps – are flattened into a vector and passed to one

or more affine transforms. For example, the popular ILSVRC Image Classification

contest [Den09] has 1000 classes, so networks trained on this task will output vectors

2.1. Convolution 11

l1 l2 l3

l4 l5 l6

l7 l8 l9

a1 a2 a3

b1 b2 b3

c1 c2 c3

a4 a5

b4 b5

c4 c5

d1 d2 d3

e1 e2 e3

d4 d5

e4 e5

a1 a2

a2 a3

a3 a4

a3 a4

a4 a5

a5 0

b1 b2

b2 b3

b3 b4

b4 b5

b3 b4 b5 0

c1 c2

c2 c3

c3 c4

c4 c5

c3 c4 c5 0

0

b1

b2

0

c1

c2

0

d1

d2

k7 k8 k9k4 k5 k6k1 k2 k3

l7 l8 l9l4 l5 l6l1 l2 l3

0

a1

a2

0

b1

b2

0

c1

c2

b1

b2

b3

c1

c2

c3

d1

d2

d3

k1 k2 k3

k4 k5 k6

k7 k8 k9

X

im2col

Figure 2.2: GEMM input preparation: im2col transformation applied to two 3×3 kernels

and a portion of the larger input matrix generated from the smaller original 5×5 input

image.

of length 1000. These affine transformations account for very little of the total infer-

ence time. Convolution affects run time more: for example, in the ImageNet-winning

SENet [Hu18] architecture, convolution accounts for 99.99% of total floating point op-

erations. This makes convolution a worthwhile target of optimisation, hence the focus

of this thesis is on this layer.

The two widely adopted convolution algorithms are the General Matrix Multiply

(GEMM) method and direct convolution. We now look at the differences between the

two algorithms.

2.1.1 General Matrix Multiply

The convolution operation is commonly implemented as matrix multiplication due to

the availability of highly optimised GEMM routines available in libraries for both CPU

(openBLAS) and GPU (CLBlas, cuDNN). The GEMM method uses the Image To

Column (im2col) operation to produce a copy of each sliding window stacked with

other windows as columns in a single matrix. This allows performing convolution

by multiplying the reshaped input and weights using an efficient GEMM routine, for

which many Basic Linear Algebra Subprograms (BLAS) libraries provide optimised

kernels.

Figure 2.2 presents the im2col operation, where two 3× 3 kernels are convoluted

on a single channel 5×5 image. The input image has 25 elements and the two kernels

have 9 elements each. To perform GEMM, kernels are unrolled into two rows, and

12 Chapter 2. Background

1 input[C][H][W]; kernels[M][K][K][C]; output[M][H][W];

2 for h in 1 to H do

3 for w in 1 to W do

4 for o in 1 to M do

5 sum = 0;

6 for i in 1 to K do

7 for j in 1 to K do

8 for c in 1 to C do

9 sum += input[c][h+i][w+j] * kernels[o][i][j][c];

10 output[o][w][h] = sum;

Listing 2.1: Direct convolution expressed in an imperative style.

through im2col the input is mapped to the input-patch matrix which is 9× larger than

the original image assuming padding of 1 and stride of 1. im2col increases memory

consumption due to data duplication in memory: in CNN architectures such as VGG,

ResNet and GoogleNet, the sliding windows overlap causing im2col to duplicate data

in memory.

2.1.2 Direct Convolution

The direct convolution method is based on a stencil algorithm, which updates elements

based on their neighbouring values. Each convolution kernel has a receptive field of

spatial size (kernelwidth× kernelheight) in 2D, usually square, K×K, and a depth to

match the input number of channels C, across all M kernels. On an input image size C×
H×W the direct convolution is performed with nested loops as shown in Listing 2.1.

Although the direct approach uses less memory, the input access patterns are more

complicated than in GEMM, requiring careful optimisation of memory access patterns.

2.1.3 Memory Footprint

Figure 2.3 shows the actual run-time memory footprint required by the largest layer in

the most popular deep neural networks used for image classification. GEMM requires

consistently more memory than direct convolution (one order of magnitude) due to the

increased memory size of the transformed input. In VGG layer 2, im2col enlarges the

input from 13 MB to 116 MB. This puts a significant strain on resource-constrained

platforms such as mobile GPUs, where memory is both small and shared for multiple

2.1. Convolution 13
22 Chapter 1. Background

 0.1

 1

 10

 100

 1000

AlexNet.L3
VGG.L2

ResnNet.L2

GoogleNet.I3b

M
e
m

o
ry

 f
o
o
tp

ri
n
t

(M
B

)

Direct Conv.
GEMM

Figure 1.11: Runtime memory footprint of largest layers in some of the most popular

deep neural networks.

convolution requires a storage space of M×K2×C for the weights and C×H×W for

the image. With the im2col in preparation for the GEMM operation, the memory space

required by the input-patch matrix is

K2×C× (
H +2P−K

S
+1)× (

W +2P−K
S

+1)

which is at least K2 times larger than the original input for strides of 1 and padding of

K/2.

1.2.5 CC 22

The GEMM method uses the Image To Column (im2col) operation to produce a copy

of each sliding window stacked with other windows as columns in a single matrix. This

allows performing convolution by multiplying the reshaped input and weights in a sin-

gle GEMM operation, for which many Basic Linear Algebra Subprograms (BLAS)

libraries provide optimised kernels. However, GEMM increases memory consumption

due to data duplication in memory: in CNN architectures such as VGG, ResNet and

GoogleNet, the sliding windows overlap causing im2col to duplicate data in memory.

In VGG layer 2, im2col enlarges the input from 13 MB to 116 MB. This puts a signifi-

cant strain on resource-constrained platforms such as mobile GPUs, where memory is

both small and shared for multiple tasks.

The direct convolution method is based on a stencil algorithm, which updates el-

ements based on their neighbouring values. Although the direct approach uses less

memory, the input access patterns are more complicated than in GEMM, requiring

careful optimisation of memory access patterns. This work shows that well-optimised

Figure 2.3: Runtime memory footprint of largest layers in some of the most popular

deep neural networks. GEMM memory footprint includes the extra memory required by

im2col.

tasks.

The difference in memory consumption can be illustrated as follows. For M kernels

of size K×K, applied over an image of C channels with width W and height H (padding

P elements to the input image and stride S to indicate the kernel sliding distance), direct

convolution requires a storage space of M×K2×C for the weights and C×H×W for

the image. With the im2col in preparation for the GEMM operation, the memory space

required by the input-patch matrix is

K2×C× (
H +2P−K

S
+1)× (

W +2P−K
S

+1)

which is at least K2 times larger than the original input for strides of 1 and padding

of K/2. In the VGG-16 CNN [Sim14], the difference in memory consumption is at

least 9×.

As demonstrated by the difference in memory consumption, there is a trade-off

between GEMM-based and direct convolution. BLAS libraries provide well-optimised

GEMM implementations, which achieve high performance at the cost of high memory

consumption. As we will see in Chapter 4, it is nevertheless possible to generate an

optimised direct convolution with a performance comparable to that of GEMM. We

now turn our attention to the topic of GPU programming, which provides the technical

background for the proposed technique to generate fast direct convolution.

14 Chapter 2. Background

Graphics Processing Unit

Compute Core

SRAM

DRAM

L2 cache

L1 cache

Execution
engine

Execution
engine

Execution
engine

Execution
engine

Reg Reg Reg Reg Reg Reg Reg Reg

Compute Core

SRAM

L1 cache

Execution
engine

Execution
engine

Execution
engine

Execution
engine

Reg Reg Reg Reg Reg Reg Reg Reg

Figure 2.4: Simplified overview of a GPU architecture. The number of compute and

memory units is not to scale.

2.2 GPU Programming

Graphics Processing Units are popular among embarrassingly parallel and streaming

applications, where the same computation is performed repeatedly on large data sets.

Although originally designed for graphics applications, GPUs rose to prominence as

a general-purpose programming platform of choice rivalling Central Processing Unit

(CPU). Compared to CPU’s complex cores capable of performing different tasks si-

multaneously, GPU provides simple compute cores with a lot of ALUs and operating

memory. The less centralised Single Instruction/Multiple Data (SIMD) architecture of

GPUs allows scaling computations across the increasingly large numbers of compute

cores with low synchronisation overheads and energy consumption.

2.2.1 GPU Architecture

Figure 2.4 shows a simplified GPU architecture. A GPU features multiple compute

cores containing hundreds of execution units each. All compute cores share Dynamic

random-access memory (DRAM) and an L2 cache. Each core usually has an L1 cache

and on-chip Static random-access memory (SRAM) shared among the threads exe-

cuted on that core. Registers are the fastest unit of memory, but they are usually scarce;

the more registers are used per thread, the fewer threads are run in parallel. DRAM

is the slowest memory – each access requiring several hundred clock cycles – while

SRAM is usually faster due to its architecture and on-chip placement.

All threads scheduled on one core are split into units called warps, otherwise known

2.2. GPU Programming 15

as thread blocks and wavefronts. A warp is the largest unit executing in lockstep, where

multiple operations are performed in parallel at the time cost of one operation. A part

of the warp might stay idle temporarily due to thread divergence, which is usually

caused by the conditional execution blocks entered by only a part of a warp.

Each access of the DRAM returns several values to fill an entire cache line. Threads

of the same warp may share a cache line if they access elements that fit in the same

cache line; in that case, the overhead of only one memory access is incurred.

Threads are organised in groups; each group is further split into one or more warps.

Each compute core can host multiple thread groups in parallel depending on the group

size and memory consumption.

Beyond a shared SRAM, compute cores provide thread groups with another crucial

feature: thread synchronisation using barriers. Threads that reach a software barrier in

their control flow must wait until all threads in the group reach the same barrier. The

barriers are set using memory fences as follows:

barrier(CLK_GLOBAL_MEM_FENCE | CLK_LOCAL_MEM_FENCE);

Where the memory fence determines how operations are to be ordered. A barrier on the

global memory orders operations which read or write global values; the local memory

fence orders the local memory accesses. Barriers are useful to synchronise across

multiple warps in a group. Lockstep execution means that the sequential operations

are well-ordered across threads of the same warp, therefore barriers are not required to

synchronise a warp.

Mobile and desktop GPUs have a few notable differences. Mobile GPUs often

do not have SRAM memory – a block of DRAM is allocated for each core instead.

Although desktop GPUs support larger thread groups, mobile GPUs put more focus on

vectorisation. Coarse-grained ALUs and memory controllers are provided to execute

multiple operations, loads and stores at the same time.

A Mali G72 GPU features 12 compute cores supporting up to 384 threads each.

Warps contain four threads called warps. Through vectorised loads of consecutive

data, a single quad fills an entire cache line of 64 bytes at the price of one access. Each

compute core of Mali G72 provides 64 bytes of register memory. The L2 cache of 524

KBytes supports a DRAM of 4 GBytes.

16 Chapter 2. Background

Figure 2.5: OpenCL platform model. From [Khr22].

2.2.2 OpenCL Programming Model

OpenCL is an open industry standard for programming heterogeneous systems sup-

porting CPUs, GPUs, Field Programmable Gate Arrayss (FPGAs) and Application-

Specific Integrated Circuits (ASICs) [Khr22]. OpenCL is a language implemented as

a dialect of C; vendors supporting OpenCL provide OpenCL compilers and drivers.

OpenCL code is designed for portability – the same program can be compiled for dif-

ferent targets with little or no changes.

2.2.2.1 Platform Model

The OpenCL platform model depends on two main components: the host and devices,

where each device can have multiple compute units (Figure 2.5). In GPU program-

ming, CPU is the host and the GPU is the OpenCL device; GPU cores are OpenCL

compute units.

An OpenCL host orchestrates execution: schedules task execution across OpenCL

devices, allocates memory and schedules data transfers between devices. An OpenCL

program code consists of the host code (typically C++) and one or more OpenCL

kernels. An OpenCL kernel is a C-like function which is executed on a device; it takes

pointers to DRAM input and output buffers as arguments. Host code tracks the start

and the end of a kernel execution through OpenCL events.

2.2.2.2 Memory Model

The OpenCL standard defines its own set of terms abstracting away the differences

among the accelerators. The memory model shown in Figure 2.6 defines four types

2.2. GPU Programming 17

 Figure 2.6: OpenCL memory model. From [Khr22].

of memories. Global memory is specific to the OpenCL device and is shared among

all its processing units – in GPUs, global memory corresponds to DRAM. Constant

memory is similar to global memory, but it is read-only for the OpenCL device.

Local memory is limited in scope to a single processing unit; on desktop GPUs,

it corresponds to SRAM. On a mobile GPU like Mali G72, local memory is allocated

in DRAM. Each compute unit has private memory corresponding to registers on a

GPU; it is limited in scope to a processing element (thread). Only global and constant

memories are accessible by the host to write inputs and read outputs.

2.2.2.3 Execution Model

The scheduling units of OpenCL are work groups and work items; on GPUs, they cor-

respond to thread groups and threads, respectively. Work items within the same work

group are executed concurrently on the same compute core and share local memory.

Work items within the same work group can be synchronised using an OpenCL barrier.

A barrier ensures valid ordering of interdependent read-write operations.

OpenCL is a SIMD programming model, therefore all work items in all work

groups execute the same OpenCL kernel. Work groups and work items are specialised

to access different memory regions using scheduling indices. Each thread can query

three indices: its local index within a work group, the index of its work group, and

the global index across all threads. Global and work group indices are used to access

specific regions of global and constant memories. Local indices are used to access

18 Chapter 2. Background

Range

WORK-GROUP

WORK-ITEM

Wavefront
(HW-Specific Size)

Dimension X

Dimens

Di
m

Y

ion Z

Dimension X

Dimension Z

Di
m

 Y

Figure 2.7: OpenCL work group and work item indexing space. From [Mun11].

local memory. The three types of indexing are also referred to as scheduling domains:

global, work group and local.

OpenCL indexing space is shown in Figure 2.7. Global, work group and local

indices are defined in three dimensions each: 0, 1 and 2 (otherwise referred to as di-

mensions X, Y and Z). 3D-indexing provides a concise way to subdivide work within

the same domain, e.g., a single work group can be further specialised three-way. In-

dexing dimension 0 (X) is the most fine-grained in terms of scheduling: threads with

consecutive indices in dimension 0 are likely to be part of the same warp.

As a dialect of C, OpenCL inherits the notion of for-loops, which are not inher-

ently sequential or parallel. An example of a sequential for-loop is for (int i = 0;

i < ub; i++) {..}. for-loops can be used to split sequential work among parallel

threads. In the following example, the loop counter iterates over the multiples of the

thread index until the upper bound is reached:

for (int i = get local id(0); i < ub; i += get group size(0)) {..}.
Thanks to its wide adoption, OpenCL programs are functionally portable – little

effort is required to perform the same computation correctly on a different architecture.

However, OpenCL code is not portable without a loss in execution speed: optimising

a program for one architecture hinders its performance on others. We now look at the

LIFT code generator, which produces platform-specific OpenCL programs to achieve

performance portability.

2.3. LIFT 19

2.3 LIFT

The design goal of LIFT is to raise the programming abstraction and enable auto-

matic performance optimisations on massively parallel accelerators, such as GPUs.

LIFT provides a high level Intermediate Representation (IR) [Ste17], and a compiler

that automatically translates the high-level IR to low-level target code. The LIFT IR

is functional where operations are side-effect free, enabling the composition of LIFT

primitives naturally. Optimisation choices are encoded using a system of rewrite rules

that capture the algorithmic and hardware-specific optimisations.

2.3.1 The LIFT Language

The LIFT functional data-parallel language abstracts away the complexities of hard-

ware, shifting the optimisation burden from users to the compiler. This separation of

concern is particularly useful in the ML field. ML engineering requires broad domain

knowledge on its own; ML practitioners should not have to acquire performance pro-

gramming expertise to produce high-performance ML programs.

The functional patterns of LIFT create an algorithmic representation of the given

problem, helping the compiler perform radical optimising program transformations.

LIFT IR is discussed in detail in previous work [Piz22; Sto21; Hag18; Ste17]. LIFT

includes hardware-agnostic algorithmic primitives and low-level primitives, which en-

code specific hardware details.

2.3.1.1 Type System

The LIFT language supports the following types: scalars, vectors, tuples and multidi-

mensional arrays. Scalars are integers and floating point numbers; the data type size

can be adjusted for the target platform. LIFT uses a limited form of a dependent type

system, where the array and vector sizes are included in the type definitions. When

LIFT’s functional patterns affect the array sizes, the changes are propagated through

the expression by the type checker. Such expressivity prevents out-of-bounds accesses

and helps preserve expression semantics during rewriting.

LIFT types are denoted in cursive as T , where T is any supported type. (x : T) de-

scribes an argument or an expression x of type T . Ti and Tj denote unrelated types of

arguments i and j. The type of an array of size n and element type T is denoted as [T]n,

where n is a symbolic arithmetic expression. A two-dimensional array type is denoted

20 Chapter 2. Background

as [[T]n2]n1, where n1 is the length of the outer dimension, and n2 is the length of the

inner dimension. An alternative multidimensional array notation is [T]−→N , where
−→
N is

a vector of array lengths:
−→
N = 〈n0,n1〉. The number of dimensions in the array of

type [T]−→N is denoted as ‖−→N ‖, i.e., the length of the vector
−→
N .

The overhead arrow notation
−→
N refers to the vectors of array dimension sizes only;

this notation is used only in type annotations to express multidimensional arrays con-

cisely. The vector data type is denoted as 〈T 〉n, where n is the vector length and T

is the vector element type. (T,U) denotes the type of a LIFT tuple with elements of

type T and U .

2.3.1.2 High-Level Algorithmic Patterns

The main high-level algorithmic primitives supported by LIFT and used in this thesis

are listed in Figure 2.8. These algorithmic primitives only express what needs to be

computed, shielding programmers from any hardware-specific implementational de-

tails. For example, themappattern does not enforce a particular parallelisation strategy

or order of traversal. Such functional representation preserves the algorithmic informa-

tion for as long as possible, leaving it up to the compiler to lower the abstract patterns

into hardware-specific primitives through rewriting.

The double arrow (⇒) denotes a function: (a : T, b : U)⇒V is a type of a function

that takes two arguments of types T and U respectively and returns a value of type V .

The subsequent discussions also refer to functions as lambdas.

Control Structures map and reduce are LIFT’s two main higher-order functions;

both are compiled to OpenCL for-loops. map applies the argument function on each el-

ement of the argument array. reduce“folds” the result using an initialised accumulator

and a binary function.

Data Layout Patterns A number of primitives in LIFT express data layout transfor-

mation patterns that only affect the shape of the data without changing its value. Data

grouping is achieved with tuple and zip, which pairs the corresponding elements of

input arrays; the resulting tuples can be unpacked usingget.

split subdivides an input array into chunks and join flattens the two outer array

dimensions. slide creates an extra array dimension by sliding a window of a given

size across the outer input dimension with a given step [Hag18]. slideStrict does

2.3. LIFT 21

map : (f : T ⇒U, x : [T]n)⇒ [U]n

reduce : (init : U, f : (U,T)⇒U, x : [T]n)⇒ [U]1

(a) Control structures

tuple : (x1 : T1, . . . , xn : Tn)⇒ (T1, . . . , Tn)

zip : (x1 : [T1]n, . . . , xm : [Tm]n)⇒ [(T1, . . . , Tm)]n

get : (i : int, x : (T1, . . . , Tm))⇒ Ti

split : (m : int, x : [T]n)⇒ [[T]m]n/m

join : (x : [[T]m]n)⇒ [T]m×n

slide : (size : int, step : int, x : [T]n)⇒ [[T]size]b n−size+step
step c

slideStrict : (size : int, step : int, x : [T]n)⇒ [[T]size] n−size+step
step

transpose : (x : [[T]m]n)⇒ [[T]n]m
transposeW : (x : [[T]m]n)⇒ [[T]n]m

pad : (l : int, r : int, value : T ′, x : [T]n)⇒ [T]l+n+r

(b) Data layout patterns

value : (val : string, type : “T ”)

(c) The constant value pattern

Figure 2.8: High-level algorithmic patterns of the LIFT IR. Inpad, the value is broadcast

if it has fewer dimensions than the argument; the base type (the type of the innermost

array elements) must match that of the argument. Invalue, the arguments are a string

encoding the constant value and the LIFT type annotation of the value, respectively.

the same with an additional restriction on the arguments: size and step should be such

that the sliding windows cover the entire input without breaking array bounds.

The transpose primitive swaps two outer array dimensions upon the subsequent

read operation, whiletransposeW swaps two outer array dimensions upon the preced-

ing write operation. pad pads an array with a fixed value, l times to the left and r times

to the right. value declares a constant with a given value and type.

LIFT keeps track of these virtual transformations using its view system. Views

are memory mapping structures which can be used to emit index expressions taking

into account the history of data layout transformations. For example, thepad primitive

produces a ViewPad view, which wraps the subsequent memory access into an inline

22 Chapter 2. Background

mapND2 : (f : T ⇒U, x : [[T]m]n)⇒ [[U]m]n

zipND2 : (x1 : [[T1]m]n, . . . , xk : [[Tk]m]n)⇒ [[(T1, . . . , Tk)]m]n

splitND2 : (m1 : int, m2 : int, x : [T]n)⇒ [[[T]m2]m1]n/(m1×m2)

joinND3 : (x : [[[T]n3]n2]n1)⇒ [T]n3×n2×n1

slideND2 : (size1 : int, step1 : int, size2 : int, step2 : int,

x : [[T]m]n)⇒ [[[[T]size2]size1]bm−size2+step2
step2 c]b n−size1+step1

step1 c

slideStrictND2 : (size1 : int, step1 : int, size2 : int, step2 : int,

x : [[T]m]n)⇒ [[[[T]size2]size1]m−size2+step2
step2

] n−size1+step1
step1

transposeND3 : (i : int, j : int, k : int, x : [[[T]n3]n2]n1)⇒ [[[T]nk]nj]ni

transposeWND3 : (i : int, j : int, k : int, x : [[[T]n3]n2]n1)⇒ [[[T]nk]nj]ni

padND2 : (t : int, b : int, l : int, r : int, value : T,

x : [[T]m]n)⇒ [[T]l+m+r]t+n+b

take : (m : int, x : [T]n)⇒ [T]m

Figure 2.9: High-level LIFT macros. Macros are expanded automatically using LIFT

primitives and serve the purpose of syntactic sugar. Higher-dimensional versions of

these macros are generated programmatically.

if-conditional. Depending on the access index, the conditional returns either the array

element or the padding constant. We will see in Section 2.3.2.2 how the views are built

during code generation based on the LIFT expression.

While other LIFT patterns produce loops and memory allocation calls, data layout

transformers affect the array index expressions and buffer sizes. Layout transforma-

tions in memory are delayed as much as possible until a function reads or writes, which

is when views are converted into arithmetic array indexing expressions. The view sys-

tem in LIFT is backed by a handmade arithmetic simplifier library.

2.3.1.3 Macros

The LIFT IR is restricted to a small set of primitives to keep the compiler lean. A

higher-level IR is provided for convenience using macros that are automatically ex-

panded to equivalent LIFT expressions. Macros shine during rewriting, where the

structure of the transformed expression varies based on the dimensionality of the orig-

inal expression, which is not known in advance.

For instance, the two-dimensional map that operates on a 2D array is defined in

2.3. LIFT 23

terms ofmap as follows:

(mapND2(f) << x) 7−→ (map(map(f)) << x)

Where 7−→ denotes semantics-preserving transformation, e.g., macro expansion or

rewriting. Two angular brackets (<<) denote function application, i.e., g << y reads

the same as g(y): “apply function g on the argument y”.

The multidimensional version of zip combines arguments across multiple dimen-

sions, provided that the corresponding dimensions are equal in size. For example,

zipND2 takes two-dimensional arguments (where the elements can also be arrays) and

produces a two-dimensional array of pairs. zipND2 is expanded as follows:

zipND2(x1, . . ., xk) 7−→
map(tuple1D ⇒ zip(get(0, tuple1D), . . ., get(k, tuple1D))

) << zip(x1, . . ., xk)

Reshaping Macros An argument is split k times as follows:

(splitNDk(m1, . . ., mk) << x) 7−→ (split(m1) o . . . o split(mk) << x)

Where o denotes function composition, i.e., f o g << y reads the same as f(g(y)).

The reverse ofsplitND isjoinND. The LIFT primitivejoin is equivalent tojoinND2.

Flattening three dimensions is expressed as follows:

(joinND3 << x) 7−→ (join o join << x)

Reordering Macros The two-dimensionalslideND2 is applied on a two-dimensional

argument, sliding a rectangular window across the two corresponding dimensions:

(slideND2(size1, step1, size2, step2) << x) 7−→
map(transpose) o slide(size1, step1) o map(slide(size2, step2)) << x

Where transposition reorders dimensions intuitively: the outer dimensions correspond

to sliding windows, and the inner dimensions correspond to window elements.

Multidimensional transposition reorders the input dimensions according to the new

order specified by the arguments. k dimensions are numbered from zero to k− 1,

with zero referring to the outermost dimension. The new dimension order is specified

through the position of the dimension indices in the transposeND arguments. The

24 Chapter 2. Background

original order is specified as (0,1,2,3); transposeND4(0,1,2,3) is a no-op, while

transposeND2(1,0) is equivalent totranspose.

For example, the following expression makes the innermost dimension of a 4D

input (dimension #3) the outermost; the second innermost dimension (#2) is moved

outwards once:

1 (transposeND4(3, 0, 2, 1) << x) 7−→
2 map(map(transpose)) o

3 transpose o map(transpose) o map(map(transpose)) << x

Where line 3 shifts the innermost dimension (#3) to the top, and line 2 shifts the second

innermost dimension (#2) up by one. Like other macros, transposeND is expanded

programmatically by the compiler based on the argument values.

Whiletranspose andtransposeND change how the argument is read by the sub-

sequent function, transposeW and transposeWND affect the writes of the preceding

function. We will see in Section 2.3.2.2 how the former translates into an input view

transformation and the latter – into the output view transformation. ThetransposeWND

macro is expanded the same astransposeNDusingtransposeW instead oftranspose.

Array Length Modifiers padND2 appends the provided value at the four edges of the

two-dimensional argument:

1 (padND2(top, bottom, left, right, value("c", T)) << (x: [[T]m]n)) 7−→
2 map(pad(left, right, value("c", T))) o

3 pad(top, bottom, value("c", T)) << x

Wherevalue is an expression with a constant value of type T equal to c.

The reverse operation to padding is truncation. LIFT supports the take macro,

which preserves the first m elements of the argument and discards the rest. take is

achieved using thepad primitive with negative amount of padding:

(take(m) << (x: [T]n)) 7−→ (pad(0, -(n-m), value("0", T)) << x)

During negative padding, the value passed to pad is ignored. The type checker propa-

gates the reduced array length through the rest of the LIFT expression, the loops make

fewer iterations, and the “depadded” values are never accessed.

2.3. LIFT 25

Lambda : (x1 : T1, x2 : T2, . . .)⇒U

let : (x : T)⇒U

UserFun : (x1 : T1, x2 : T2, . . .)⇒U

oclKernel : (f : (T1, T2, . . . ⇒U), x1 : T1, x2 : T2, . . .)⇒U

Figure 2.10: Function literals of the LIFT IR. Lambda and UserFun refer to classes of

functions;let andoclKernel are IR primitives.

1 map(elX ⇒ (elG ⇒
2 map(elY ⇒ f(elG, elY)) << y

3) << g(elX)

4) << x

(a)

1 map(elX ⇒ let(elG ⇒
2 map(elY ⇒ f(elG, elY)) << y

3) << g(elX)

4) << x

(b)

1 map(elX ⇒
2 map(elY ⇒ f(g(elX), elY)) << y

3) << x
(c)

Figure 2.11: Examples illustrating the difference between an ordinary LIFT lambda and

thelet primitive. Due to argument inlining, the expression (a) is equivalent to (c).

2.3.1.4 Function Literals

LIFT depends on four classes of function literals that are used as the top-level Ab-

stract Syntax Tree (AST) node, composed with and nested in other function literals

and patterns.

Lambda Anonymous functions are first-class citizens of the IR. A lambda has pa-

rameters and a body expression, which defines what happens with the parameters.

The notation (f : T ⇒U) implies a lambda with a parameter of type T and a body

expression of type U . An alternative notation omits the parameter declaration and ap-

plication when the parameter is used only once at the top level of the function body.

For example, the anonymous function of a map in map(x ⇒ f << x) is sometimes

shortened as follows: map(f).

Let Thelet primitive declares a special type of lambda, where the lambda argument

is evaluated before the lambda body. On the other hand, the regular lambda evaluates

the arguments that are used only once upon the first usage. Consider the example in

26 Chapter 2. Background

Figure 2.11a, where a function f is applied on all pairs of elements of x and y; elements

of x are also preprocessed using function g. The ordinary LIFT lambda inlines the

function argument to simplify the expression. However, this results in evaluating g

once for every element of y and x, therefore the example (a) is equivalent to (c). The

let primitive in (a) prevents argument inlining and evaluates g(elX) before entering

themap over y.

User Function A special type of lambda is a User function (UF) whose body is

defined in the target-specific language, e.g., OpenCL C. A UF performs operations

on data in memory in the order defined by LIFT control structures and data layout

transformers. UFs include OpenCL primitives such as dot and arithmetic operands; an

identity function id issues a copy operation to a new buffer. An expression containing

a UF is considered “concrete” because it results in operations on memory; otherwise,

the expression is “abstract”.

OpenCL Kernel Function A lambda wrapped in oclKernel produces a separate

OpenCL kernel [Sto21]. A LIFT program supports multiple oclKernel instances –

the compiler generates an accompanying host code which schedules kernel execution

and passes data between kernels.

2.3.1.5 OpenCL Primitives

LIFT IR is defined on two levels: platform-agnostic and platform-specific. In order

to support the generation of code for parallel accelerators, LIFT introduces low-level

primitives that are tightly coupled with the hardware-specific programming model.

This section reviews the main OpenCL primitives used in this work to target a mo-

bile GPU (Figure 2.12).

Scheduled Control Structures While thereducepattern is always sequential, LIFT

complements the sequentialmapSeqwith several parallel variants of map for OpenCL:

mapGlobal, mapWrg and mapLcl. These variants capture the OpenCL programming

model, where work can be parallelised across a flat thread index domain (global), work

groups and threads within work groups (local). For each of the three domains, OpenCL

permits parallelising in three dimensions. For local and global domains, dimension 0

indexes neighbouring threads.

2.3. LIFT 27

mapGlb : (dim : int, f : T ⇒U, x : [T]n)⇒ [U]n

mapWrg : (dim : int, f : T ⇒U, x : [T]n)⇒ [U]n

mapLcl : (dim : int, f : T ⇒U, x : [T]n)⇒ [U]n

mapSeq : (f : T ⇒U, x : [T]n)⇒ [U]n

reduceSeq : (init : U, f : (U,T)⇒U, x : [T]n)⇒ [U]1

(a) Scheduled control structures

toHost : (f : T ⇒U, x : T)⇒U

toGPU : (f : T ⇒U, x : T)⇒U

toGlobal : (f : T ⇒U, x : T)⇒U

toLocal : (f : T ⇒U, x : T)⇒U

toPrivate : (f : T ⇒U, x : T)⇒U

toMem : (mem : Memory, f : T ⇒U, x : T)⇒U

(b) Address space patterns and a macro

asVector : (n : int, x : [T]m)⇒ [〈T 〉n]m/n

asScalar : (x : [〈T 〉n]m)⇒ [T]m×n

vectorise : (n : int, f : T ⇒U, x : T)⇒ 〈U〉n

(c) Vectorisation patterns

Figure 2.12: Low-level OpenCL patterns and macros of the LIFT IR.

Address Space Patterns LIFT captures the OpenCL device memory model using

primitives toGlobal, toLocal and toPrivate. Wrapping an expression in these

forces the output into global, shared or private memory, respectively. OpenCL run-

time subsequently maps these concepts to the memories available on hardware such

as off-chip DRAM, on-chip SRAM and registers. Due to the differences in memory

bandwidths and latencies, LIFT must be able to distinguish between address spaces.

For host code generation, LIFT provides the toGPU primitive to move data from

host memory to the global memory on the GPU, and toHost to do the reverse. The

toMemmacro is syntactic sugar to generate one of the address space patterns based on

the memory name passed as an argument.

28 Chapter 2. Background

Expr
type: Type

as: AddressSpace

Literal
value: String

Param
FunCall
f: FunDecl
args: Expr*

FunDecl

Lambda
params: Param*
body: Expr

Pattern
UserFun
code: String

MapGlb
MapWrg

MapLcl
f: Lambda

. . .
Join

Split
n: Int

Figure 2.13: Class diagram of the LIFT IR implementation [Ste17].

Vectorisation Patterns LIFT provides asVector and asScalar which cast scalar

arrays to vector types (e.g., float4) and vice versa. vectorise is provided to vectorise

any scalar operator.

2.3.2 The LIFT Compiler

The LIFT IR is implemented in Scala as an embedded language. The entire IR is

captured by the classes in Figure 2.13. The two main entities of the IR implementation

are an expression and a function declaration. An expression has a value of a known

type; a function declaration can produce a new value when applied to an expression.

An expression is a literal (a constant), a lambda parameter or a function call; a

function call is an application of a function declaration on one or more argument ex-

pressions. A lambda declaration consists of a list of lambda parameters and a body; a

lambda body is an expression that may use lambda parameters. A Pattern captures

high-level and low-level IR primitives.

The LIFT compiler is implemented in Scala. The compilation flow presented in

Figure 2.14 is split into two stages: optimisation and code generation. The optimisation

is performed using a system of rewrite rules expressing algorithmic and hardware-

specific design choices. The result of rewriting is a LIFT expression that is semantically

equivalent to the original expression.

Code generation is performed by walking the AST and iteratively annotating the

nodes with information on memory allocation, array indexing and synchronisation re-

quirements. The compiler maintains the rich algorithmic representation of a functional

IR until all design decisions are made, and the target AST can be generated and printed.

Next, we look at the main LIFT compilation passes individually.

2.3. LIFT 29

View Construction

C++, OpenCL Generation

Barrier EliminationMemory Allocation

Pretty Printer

Loop Bound Inference

Code Generation

Type
Check

Type
Check

Type
Check

Algorithmic
patterns

High-Level
Application
Expression

Platform-Specific Rewriting

Memory

Reordering

Vectorisation

Scheduling

High-Level
Rewriting

Algorithmic

Figure 2.14: Overview of the LIFT compilation workflow.

2.3.2.1 Rewrite Rule System

The LIFT IR yields well to automated program analysis thanks to the lack of side

effects and its high-level program representation. The compiler leverages these prop-

erties using rewrite rules — local semantics-preserving transformations of the AST

defined on IR patterns. A pattern is expressed as a small AST tree restricted to a spe-

cific combination of IR primitives and types. A few dozen rewrite rules can be used

to create a search space covering design decisions required to achieve high perfor-

mance [Ste16]. We now look at notable examples of rewrite rules.

Consider map(f) << x, where function f is applied on each element of x. If x

contains many elements, some target platforms require tiling x, so dedicated work

groups in local memory can process different chunks. In LIFT, such transformation

could be achieved using the Split-Join rewrite rule:

(map(f) << x) 7−→
join o map(map(f)) o split(chunkSize) << x

Where the long arrow (7−→) denotes rewriting an expression into its semantic equiva-

lent. The transformed expression splits x into chunks and maps an expression on each

chunk, in which a nested map applies f on each element of a chunk. The resulting

two-dimensional array is flattened using join so that the original expression type is

preserved.

Tiling the loop is an algorithmic transformation which creates platform-specific

rewriting opportunities. To lower an abstract LIFT expression in a platform-specific

equivalent, the following rewrite rules are used:

(map(f) << x) 7−→ (mapWrg(0)(f) << x)

(map(f) << x) 7−→ (mapLcl(0)(f) << x)

These lowering rules apply to the tiled expression above as follows:

30 Chapter 2. Background

(join o map(map(f)) o split(chunkSize) << x) 7−→
join o mapWrg(0)(mapLcl(0)(f)) o split(chunkSize) << x

The result is a parallelised expression.

Platforms such as Mali GPU provide vectorised operations such as loads, stores

and the built-in dot operator. This fine-grained parallelism is exploited in LIFT using

the following rewrite rule.

(map(f) << x) 7−→
asScalar o map(vectorise(f)) o asVector(vectorLength) << x

asScalar at the end of the expression preserves the original return type. LIFT code

generator produces corresponding OpenCL type cast calls.

Since rewrite rules produce expressions in the same IR, the entire rewrite rule sys-

tem is decoupled from code generation. Changing or adding new rules to support new

optimisations and platforms requires no alteration of the rest of the compiler. Course-

grained transformations are achieved by combining rules in chains. The rewriting

space can be performed exhaustively, heuristically or using intelligent search meth-

ods.

2.3.2.2 View System

Array indexing-based languages express memory access patterns with arithmetic func-

tions defined on loop counters, work group and thread indices and data dimensions.

The resulting arithmetic expressions are hard to produce correctly by hand. Fusing

multiple data layout transformations in a single expression results in an opaque rep-

resentation. This strains the static analysis methods used to detect out-of-bounds ac-

cesses and determine data dependencies within the same buffer.

The LIFT compiler tracks data layout transformations using an internal represen-

tation structure called views [Ste17]. Each transformation produces a separate view;

composing data layout patterns produces a view tree capturing the entire layout mod-

ification history. This rich representation is preserved for as long as possible: the

transformations remain virtual until they are committed to memory by a user function.

View Construction Each view defines how the corresponding primitive affects the

array index. The root of the view tree is a ViewMem, grounding the tree in a specific

memory buffer. Because of tuples, a view tree can have multiple roots. The leaves of

2.3. LIFT 31

the view tree are user functions accessing one of the memory buffers in the tree roots.

Traversing the tree in the bottom-up order produces an array index expression; the root

produces a pointer to a specific memory buffer.

For each expression, LIFT produces two views: an input view and an output view.

The input view affects how the expression value is read by the subsequent primitives.

The output view affects how the expression value is produced by the preceding primi-

tives.

View Consumption When a user function call is generated, views are used to pro-

duce array index expressions implementing the transformed data layout. Array access

generation starts at the corresponding leaf of the tree and proceeds in the bottom-up

order. During tree traversal, the compiler generates an access stack of indexing subex-

pressions corresponding to array dimensions. Each traversed view modifies the stack,

adding or changing the indexing subexpressions. Once a root is reached, the stack

is converted into a single index expression by multiplying the subexpressions by the

corresponding array dimension sizes.

Accessing an array element through a map or a reduce parameter results in a

ViewAccess, which inserts the corresponding loop variable into the access stack.

tuple andzip primitives bifurcate the tree above the ViewTuple and ViewZip nodes,

respectively. get introduces a ViewGet tree node, which is used by the compiler to

navigate the bifurcated branches.

ViewTranspose reorders the loop iterators in the access stack, swapping the di-

mensions on which the iterators are applied. ViewJoin converts a 1D iterator in the

array access stack into two iterators over the original two dimensions before thejoin.

ViewSplit does the reverse. ViewPad wraps the entire index expression in an inline

if-conditional. The conditional returns a constant for the indices pointing to the padded

areas; otherwise, array values are returned.

The view tree is consumed during OpenCL AST generation, one of the last steps

before pretty-printing. Until then, views are used for static analysis: a view tree can

be flattened and filtered by the relevant transformations to extract information quickly.

We will see how this rich representation is leveraged in Section 5.4 for synchronisation

barrier insertion.

32 Chapter 2. Background

2.3.2.3 Memory Allocation

The LIFT compiler allocates memory by analysing the AST. While the input buffer

size is trivial to determine based on the user-defined argument types, the output and

intermediate buffers are inferred from the functional expression. Buffers are allocated

for the results of each UF used in the expression. A UF defines the type of the result

buffer and the size of each scalar or vector element stored within. Based on the position

of the UF in the AST, the compiler determines the Address space (AS) and the size of

the buffer.

The buffer AS is inferred based on the function argument AS and the encapsulating

AS casters such as toGlobal, toLocal and toPrivate. The following aspects of the

AST determine buffer size:

• Functional patterns encapsulating the UF. For example,mapproduces one output

per each element of the argument array; reduce produces one output for the

entire argument.

• Data layout transformations applied on the UF arguments. For example, thepad

primitive changes the size of the output based on the amount of padding.

• Parallel mapping of the IR primitives encapsulating the UF. The buffer size is

affected by an encapsulating primitive only if the buffer AS is accessible in the

parallel domain of the primitive. For example, mapWrg affects the size of the

global buffers only, since a work group cannot return private (register) or local

(per-core) memory. mapSeq on the other hand affects the size of buffers in all

ASs, since all memories support sequential access.

• Function composition. Intermediate buffers are allocated for the subexpressions

composed with expressions containing UFs; the UFs whose results are returned

by the entire LIFT expression yield output buffers.

The LIFT compiler allocates a buffer for each UF. The buffer information is recorded

on multiple AST nodes: the UF, the patterns nesting the UF and the subtrees accessing

the results produced by the UF. Next, the compiler uses the propagated memory in-

formation to determine data dependencies among the accesses of the allocated buffers

and to prevent data races.

2.3. LIFT 33

Algorithm 1: Example patterns of the pattern matching-based barrier place-

ment approach, where setting a barrier on a primitive forces the code gen-

erator to insert a barrier after the primitive implementation in the OpenCL

kernel.
1 switch (e: expression)

2 case map(mapLclA(dim0, f0)) where f0 accesses local memory do

3 set barrier on mapLclA

4 case f0 o mapLclA(dim0, f1) where f0 transforms data layout do

5 set barrier on mapLclA

6 case mapSeq(f0) o mapLclA(dim0, f1) do

7 set barrier on mapLclA

8 case mapLclA(dim0, mapLclB(dim1, f0))

9 where barrier is set on mapLclB do

10 remove barrier from mapLclB

11 ...

2.3.2.4 Barrier Elimination

LIFT uses the IR pattern matching-based approach to detect data dependencies, with

patterns defined on both the IR primitives, types and address spaces. Algorithm 1

presents example patterns used by the LIFT to determine barrier placement based on

the detected data dependencies. The case on lines 2 to 3 inserts a barrier when a work

group reads or writes shared data in parallel in a loop, since there might be data depen-

dencies between iterations of the loop. On lines 4 to 5, a barrier is inserted when the

layout of the data produced in parallel is transformed; in such case, a subsequent par-

allel loop might map threads onto the shared data differently, with a data dependency.

The pattern on lines 6 to 7 is based on the parallel mapping of functions f0 and

f1: first, each thread applies f1 on one element of the argument array each; then, each

thread applies f0 on all outputs ofmapLclA sequentially. mapSeq can be executed only

after all iterations ofmapLclA are completed, hence the barrier is inserted.

The example on lines 8 to 10 pattern-matches a parallel loop nest. To achieve a

more efficient barrier placement, the inner barrier is removed under the assumption

that a loop is placed on the outer barrier placed to satisfy the same data dependency.

34 Chapter 2. Background

1 def stencil2D(weights : [[f loat]3]3,

2 inputData : [[f loat]width]height

3) : [[f loat]width−2]height−2 = {

4 mapWrg(0)(

5 mapLcl(0)(neighbourhood ⇒ toGlobal(id) o

6 reduceSeq(

7 init = toPrivate(id) << value(0, f loat),

8 f = (acc, (l,r)) ⇒ acc + l * r

9) << zip(join(neighbourhood), join(weights))

10)

11) << slideND2(3,1,3,1) << inputData }

Listing 2.2: Example of a 2D Stencil.

neighborhood

weights

image
join

join
zip

reduceSeq

Figure 2.15: Visualisation of the 2D stencil example in Listing 2.2.

2.3.2.5 Code Generation Example

We now look at an example expression illustrating code generation in LIFT. Listing 2.2

encodes a stencil computation, which forms the basis for convolution.

Expression The function stencil2D takes a 3×3 array of weights and a 2D image

array. The body consists of two parts: data layout transformation and core computa-

tion. For data layout, it first creates a 3×3 sliding window usingslideND2 in line 11,

which results in a 2D neighbourhood. Then, two maps are used in line 5 to schedule

the work to each local thread in each work group running on a GPU.

Each thread performs the core computation on a neighbourhood in lines 9 to 6. This

process is visualised in fig. 2.15. First, two instances of join are used to flatten the

two 2D arrays: the weight array and the sliding window into simpler 1D arrays. Then,

the two 1D arrays are zipped into a single array of tuples and reduced sequentially to a

single scalar value, representing convolution output for one neighbourhood.

2.4. Summary 35

1 kernel stencil2D(const global float * weights,

2 const global float * inputData,

3 global float * outData,

4 int width, int height) {

5 for (int wrg_i = get_group_id(0); wrg_i < height; // mapWrg(0)

6 wrg_i += get_num_groups(0)) {

7 for (int lcl_i = get_local_id(0); lcl_i < width; // mapLcl(0)

8 lcl_i += get_local_size(0)) {

9 private float acc = 0.0f; // toPrivate(id)

10 for (int i = 0; i < 9; i++) // reduceSeq

11 acc = acc + weights[i] * inputData[(i%3) + (i/3)*width +

12 lcl_i + wrg_i * width];

13 out[lcl_i + wrg_i * width] = acc; }}} // toGlobal(id)

Listing 2.3: OpenCL code generated with LIFT for the 2D stencil example in Listing 2.2

Generated Code LIFT produces parallel OpenCL code by walking the AST of the

example and emits code for each primitive. The exceptions to this process are the

primitives that are changing the data layout, such asjoin,split,zip,padorslide. In

these cases, the compiler constructs the views representing the layout transformations;

the views are used to generate correct accesses for other primitives. Listing 2.3 shows

the code produced by the LIFT compiler (with minor cosmetic changes such as naming

and indentation) for the example in listing 2.2. First, a for-loop for distributing the

work among work groups in the dimension 0 is generated on line 5 corresponding to the

mapWrg. Then, a second loop for distributing the work among local threads is generated

on line 7 corresponding to the mapLcl. The reduction accumulator is allocated in

private memory and initialised on line 9. Following that is the reduction for-loop,

which accumulates the results of multiplying an element of the weight together with

the corresponding element of the input data. The array accesses are automatically

generated using the information in the view built from theslide andzip primitives.

2.4 Summary

This chapter has provided the background required for the rest of the thesis. The

introduction to convolution has laid out this application’s challenges tackled in the

later chapters. The direct and GEMM-based convolution methods require different

approaches; addressing both within the same framework makes a case for the general-

36 Chapter 2. Background

isability of the optimisation method. The chapter has also introduced GPU program-

ming in OpenCL, the target language of this thesis’ code generation efforts. Finally, the

chapter has provided an overview of the LIFT IR and the compiler internals, outlining

the starting point of this work.

Chapter 3

Related Work

Parallel programming abstractions are broadly categorised into two categories: explic-

itly and implicitly parallel. Those capturing explicit parallelism are provided either at

a low level capturing a particular hardware architecture or a programming model, or

at a higher, more structured level. Structured parallel programming organises the code

in patterns with well-defined semantics [McC12]. These algorithmic patterns provide

code generators with leeway to adapt the algorithm to diverse architectures, enabling

performance portability.

Implicitly parallel IRs model dependencies between data and operations without

restricting them to a specific ordering or scheduling. These IRs decouple the algorithm

from the implementation, shifting the burden of code parallelisation from the user to

the code generator. An implicitly parallel IR that captures algorithmic intent yields

well to automatic parallelisation [Pre19].

The rest of this chapter is organised in the ascending order of IR abstraction lev-

els. Section 3.1 discusses explicitly parallel programming APIs, which provide fine-

grained control over scheduling and memory management in GPUs. The section also

covers notable extensions of mainstream sequential languages, which help users par-

allelise their code by exposing scheduling primitives. Next, optimised kernel libraries

are discussed, which provide low-level implementations of domain-specific patterns

and coarse-grained primitives.

Section 3.2 covers the techniques of capturing and detecting implicit parallelism

in applications. First, we look into the automated approaches to extracting parallelism

from sequential IRs. With little or no user input, these techniques find higher-level

patterns in low-level sequential code and expose them for automated parallelisation.

Next, the chapter covers algorithmic skeletons, which encode parallelisable patterns

37

38 Chapter 3. Related Work

and abstract most of the scheduling complexity away from the user. Then, the chapter

discusses the two paradigms that are relevant to this thesis: computational graphs and

functional IRs. Finally, Section 3.3 covers three specific optimisation techniques: auto-

tuning, constraint-based parallelisation and user-guided optimisations.

3.1 Explicitly Parallel Approaches to GPU Programming

Originally designed for graphics processing applications, GPUs expose plenty of power-

efficient SIMD processing units tailored for simple floating-point operations. This

made GPU an accelerator of choice for data-parallel applications such as machine

learning. Harnessing the power of multicore systems required dedicated APIs. We start

with explicitly parallel interfaces, relying on the user for task partitioning, scheduling

and synchronisation [Sér99]. These low-level APIs provide users with fine-grained

control of minute hardware units for optimum resource allocation. To ease framework

adoption, most of these languages are embedded in established sequential languages,

implemented as annotations or interfaces over libraries.

3.1.1 Low-Level Parallel APIs

Several low-level generic APIs have been released to expose scheduling and mem-

ory management functionality to the users. One of the first programming models for

General-Purpose computing on Graphics Processing Units (GPGPU) is the streaming

model [Buc04]. Data-parallel fine-grained functions called kernels are applied on the

sequences of independent data elements in memory called streams. Multi-stage reduc-

tions are used to produce a single output from a data stream.

NVIDIA introduced the CUDA language, compiler and runtime system for GPGPU

in 2007 [Nic08]. CUDA remains the low-level language of choice for high-performance

programming on the NVIDIA GPUs. However, restriction to one brand of GPUs moti-

vated work on open standards to reduce the efforts required to port applications to new

platforms.

OpenCL was released in 2009 by a consortium of large organisations as an open

standard to support multiple device architectures using one programming model [Khr22].

To date, OpenCL supports CPUs, GPUs, FPGAs and ASICs; a single OpenCL program

can manage a heterogeneous system combining multiple devices. However, OpenCL

implementations are not directly portable without a loss in performance: optimising a

3.1. Explicitly Parallel Approaches to GPU Programming 39

solution for one platform may reduce its performance on others.

The OpenMP API extends C, C++ and Fortran with compiler directives to expose

loop and task-based parallelism [Ope08]. OpenMP uses shared memory and fork-join

execution models. These abstractions enable both CPU [Chr11] and GPU [Bey11]

code generation. Designed for productivity, OpenMP simplifies access to parallel ac-

celerators; however, optimal scheduling still requires high-performance programming

expertise.

OpenACC adds a layer of abstraction over OpenCL and CUDA [Wie12]. The com-

piler abstracts the details of the target APIs away from the user using loop and code

region-based annotations in C/C++ and Fortran. Although this approach simplifies

parallel programming, it does so at the expense of performance portability. By repre-

senting the shared features across a range of devices, OpenACC misses architectural

specifics which are crucial for performance [Ope15]. Both OpenACC and OpenMP

have been shown to underperform against the OpenCL-based solutions [She12; Tho12].

The SYCL open standard extends C++ to generate SPIR, SPIR-V and OpenCL

kernels [Khr15]. SYCL generates the boilerplate host code and provides type safety

across heterogeneous platforms. The same SYCL representation is used across CPUs

and GPUs.

The SYCL-like approach of extending a mainstream sequential language or IR

retroactively has been adopted by many projects to lower barriers to entry into par-

allel acceleration. Coarray Fortran (CAF) adds the shared memory programming

model to FORTRAN [Num98]. Unified Parallel C (UPC) exposes the shared and

distributed memory models of parallel accelerators in C [Car99]. PACXX adopts a

multi-stage programming approach to specialise GPU kernels JIT-compiled from ex-

tended C++ [Hai16]. The C++17 standard introduced parallel versions of popular STL

functions [ISO20]. CPU parallelisation primitives have been added to C++ by the

Intel Threaded Building Blocks (TBB) library [Rei07]. Numba [Lam15] and Cop-

perhead [Cat11] extend Python to generate GPU kernels provided that the user limits

themselves to a restricted subset of Python.

The LLVM-based NVIDIA’s CUDA Compiler (NVCC) translates CUDA, C, C++

and FORTRAN into the NNVM IR, which is compiled into the Parallel Thread Ex-

ecution (PTX) virtual Instruction Set Architecture (ISA) [NVI18]. The open-source

GPUCC compiler improves over NVCC in terms of the compilation speed, generated

code efficiency and the range of supported C++11 and C++14 features [Wu16].

The solutions based on explicitly parallel APIs have limited performance porta-

40 Chapter 3. Related Work

bility. Any one parallel programming model does not capture the full diversity of

parallel accelerator architectures. Extending an explicitly parallel implementation for

a new platform requires significant engineering effort. We now look at an alternative

approach, which abstracts away some of the implementational details from the user.

3.1.2 Kernel Libraries

Statically compiled kernels for popular computation blocks provide robust, predictable

performance and are well-optimised by high-performance computing experts. Deep

Learning (DL) frameworks in particular often depend on statically compiled kernels

within Basic Linear Algebra Subprograms (BLAS) libraries such as Atlas [Wha01],

CuBLAS [Nvi07], OpenBLAS [Xia12] and CLBlast [Nug18] to provide a well-optimised

and predictable performance.

CUTLASS is a templated library for math applications providing parametrised im-

plementations [NVI]. The C++ templates of CUTLASS are shaped around specific

hardware architectures and expose finer-grained design choices than the opaque ker-

nels in the older BLAS libraries. The burden is still on the user to choose optimal

parameter values.

Although it takes little effort for the end users to tap into the high performance

of the optimised BLAS kernels, these approaches fall short of leveraging the target

platform potential fully for a given application. For DL applications in particular, the

BLAS-based approach requires that DL units are lowered to corresponding linear alge-

bra operations, which is non-trivial with the multitude of variations across DL model

dimensions and hardware specifications. It often comes at the cost of lost opportunities

for domain-specific optimisations such as layer fusion.

The Stream-K project tackles this inflexibility in the CUTLASS library [Osa23].

An automated parallelisation pass improves the SM core utilisation in GPUs from 75%

to 90% compared to the traditional data-parallel tiling methods. The improvement is

achieved by partitioning tasks at the fine-grained scale of Multiply-accumulate opera-

tion (MAC) loop iterations. This work is limited to dense GEMM kernels.

Multiple hardware vendors released libraries with optimised DL kernels. This in-

cludes Intel oneDNN [Wan14], Nvidia TensorRT [NVI22], cuDNN [Che14], ARM

Compute Library [Arm21] and AMD MIOpen [Kha19]. These libraries provide domain-

specific optimisations such as TensorRT’s layer fusion and low-bit quantisation, convo-

lution kernel auto-tuning in MIOpen and Intel’s automatic detection of Vector Neural

3.2. Implicit Parallelism for Code Generation 41

Network Instruction (AVX512 VNNI) usage opportunities. Due to the manual devel-

opment costs, these libraries lag behind the rapid evolution of DL architectures and

releases of new hardware models, and cannot provide optimal implementations for

new problems.

Other works have recently explored efficient implementations of direct convolu-

tion [Geo18; Zha18; And17] but are limited in the scope of their available target

platforms. In particular, [Geo18; Zha18] are reliant on the availability of SIMD in-

structions and are specific to CPUs.

Kernel libraries are constrained in how much they can adapt to the target hardware

relying just on tuning and handwritten code selection. Kernels developed for a specific

platform do not perform as well on other platforms; this holds even for the cross-

platform OpenCL programming model [Rem16]. We now look into the implicitly

parallel IRs, which raise the level of abstraction higher.

3.2 Implicit Parallelism for Code Generation

The increased diversity and heterogeneity of accelerator architectures have made it

more challenging to achieve high performance through manual implementation. Low-

level implementations are not portable without the loss in correctness or performance,

incurring high development costs for users. Similarly inflexible are the optimised ker-

nel libraries, where the development burden is shifted onto the library developers.

This rigidity motivated decoupling the problem specification from implementation

further. Changing the implementation requires an understanding of the algorithmic

intent to ensure that the changes do not break the semantics of the original algorithm.

This meta-information is not easily inferred from a low-level IR, where the program-

ming model is moulded around a specific hardware architecture. Data dependencies

are obscured through complex index array expressions, thread synchronisation primi-

tives and pointer aliasing.

The rest of this section discusses automated parallelism extraction, the notable IRs

capturing implicit parallelism and the optimisation methods they enable.

3.2.1 Automatic Extraction of Parallelism

Loops pervade compute-intensive programs thanks to the succinct representation of

repetitive tasks. Automatic parallelisation techniques often use loops as parallelisation

42 Chapter 3. Related Work

targets and map iterations onto parallel processing units. This requires dependency

analysis to detect independent iterations and achieve loop transformations which ex-

pose more parallelism. Loop nesting and complex dependencies between loop itera-

tions complicate iteration space analysis and loop optimisations for performance.

Polyhedral approaches use geometric representations of loops, where each iteration

is represented as a lattice point on a polyhedron, and dependencies among iterations

become apparent. This paradigm shift enables reasoning about loops indirectly in geo-

metric space, which can be leveraged for parallelism detection and loop optimisation.

Polyhedral compilers extract and optimise parallelism through linear program-

ming, affine transformations and data access optimisations. This includes PPCG [Ver13],

LetSee [Pou08], Tensor Comprehensions (TC) [Vas18], PlaidML [Zer19] and Tiramisu

[Bag19]. TC uses polyhedral IR to create a search space of loop transformations and

depends on user-supplied heuristics to prevent search space explosion. The generated

kernels perform well on desktop GPUs, but the transformation framework is not flexi-

ble enough for low-effort extensions onto other platforms due in part to the hard-coded

memory promotion strategies. The user-supplied constraints are too fine-grained and

thus do not truncate search space sufficiently; TC’s higher-level mapping options are

part of the compiler framework and cannot be easily extended.

Pluto is a source-to-source code generator, which parallelises C and FORTRAN

loops through polyhedral dependency analysis [Bon08]. Affine loop nests are paral-

lelised efficiently through loop tiling, fusion and unrolling. Non-affine loop paralleli-

sation is not as efficient; the framework also permits code transformations that break

program semantics and produce incorrect results [Pre19].

In general, polyhedral optimisations are computationally expensive making poly-

hedral compilers slower than the alternatives [Dav20]. Extra effort is required to miti-

gate this aspect, such as offline statement clustering proposed in [Bag20]. Furthermore,

loops must possess certain properties to be expressible in a polyhedral model. Specifi-

cally, loop bounds must be expressible with linear affine expressions.

AlPyNa [Jac19] parallelises Python code and produces CUDA kernels using the

Numba JIT compiler [Lam15]. AlPyNa tackles the ambiguity of Python’s dynamic

nature using staged dependence analysis. Parallelisable loops are identified at runtime,

when the loop bounds and variable types are known.

Several frameworks focus on detecting stencils – grid-based memory access pat-

terns. Stencils are identified through code analysis and exposed for automatic paral-

lelisation. This technique is called lifting, where a high-level algorithm is constructed

3.2. Implicit Parallelism for Code Generation 43

from a semantically equivalent low-level implementation. Helium [Men15] applies

lifting to x86 binaries and produces equivalent Halide expressions for reparallelisation.

The constraint-based Idiom Description Language [Gin18] is used to detect stencils in

sequential C/C++ programs, and produce optimised BLAS, Halide and LIFT imple-

mentations. Multi-level Tactics [Che21] uses Tactics Description Language (TDL)

implemented in the MLIR compiler infrastructure [Lat20] to perform progressive rais-

ing of C++ programs through pattern-matching.

Producing efficient implementations through automatic parallelism extraction re-

mains challenging. We now look at the expressive high-level IRs which capture and

expose implicit parallelism for automatic parallel code generation.

3.2.2 Algorithmic Skeletons

Low-level parallel IRs such as CUDA and OpenCL are constrained by the hardware

architectures they target. They do not require a specific algorithmic structure, which

makes them generalisable to a broad range of applications. Optimised kernel libraries

trade that generalisability for expressive power by providing course-grained proce-

dures. In terms of the overall application structure though, these libraries are similarly

unconstrained: their kernels can be freely combined in any arrangement.

A program expressed using algorithmic skeletons [Col89; Col04] adheres to a more

salient and tractable structure than the two approaches above. Skeletons express pat-

terns of computation – high-level properties of control and data flow in a program. In

contrast to more monolithic procedures offered by the kernel libraries, skeletons are

higher-order procedures that construct the final program based on the user-provided

functions. Algorithmic skeletons are not constrained by any one hardware architec-

ture and are therefore a popular choice of representation in the pursuit of performance

portability.

Algorithmic skeletons have been used as interfaces between users and parallel ac-

celerators. A notable application of the skeleton-like approach is Google’s MapRe-

duce [Dea08]. These frameworks target heterogeneous and distributed systems using

an API centred around two algorithmic skeletons: map and reduce. The former applies

a user-provided function on each element of the key-value pair set; the latter applies

the user-provided function on all input elements to produce a single output. In this ap-

proach, the user describes the computation without declaring a parallelisation strategy

explicitly. All design decisions are made by the runtime automatically.

44 Chapter 3. Related Work

Multiple MapReduce-based solutions have been released. Besides the MapReduce

programming model implementation, the open-source Apache Hadoop eco-system in-

tegrates MapReduce into several programming languages and provides a data stor-

age system for distributed computing [Whi12; Shv10]. Optimised for large clusters,

Hadoop underperforms on multicore nodes due to high start-up overheads and du-

plicate JVM instantiations [Ste12]. The MapReduce Java framework addresses these

shortcomings [Sin11].

Several frameworks expose algorithmic skeletons as C++ templates and target GPUs.

SkelCL [Ste11] provides OpenCL implementations of map, reduce, scan and zip skele-

tons. FastFlow [Ald11] implements CUDA implementations of farm, divide and con-

quer, pipeline, map, reduce skeletons. SkePU [Enm10] targets multi-GPU systems and

generates both CUDA and OpenCL.

3.2.3 Computational Graphs

A computational graph is a Directed Acyclic Graph (DAG) representing relationships

between data and operators – coarse-grained algebraic functions. Explicit staging and

ordering of computations entail a dependency graph, which is leveraged to map oper-

ators onto compute nodes in parallel and distributed platforms. Operator fusion helps

saturate the processing units and avoid expensive data movements. Computational

graphs are especially popular among DL-specific code generators, where the edges are

bidirectional to represent both forward and backward propagations.

Similarly to the LIFT IR, the High-Level Optimizer (HLO) IR of the Tensorflow

compiler XLA [Lea17] adopts a functional representation, where most of the primi-

tives have no side effects. For search space exploration, XLA uses an ML-based cost

model to predict performance and improve accuracy dynamically. XLA can also apply

polyhedral transformations through affine MLIR dialect [Lat19]. Program transforma-

tions in XLA are correct by construction thanks to the requirement that the semantics

of the language primitives – the high-level operators such as conv and fft – are fully

declared. XLA leverages its well-defined primitives to perform operator fusion and

optimise across several operators at once. Extending operators or transformations is

costly since the perfect semantics knowledge of both needs to be maintained.

DLVM [Wei17] uses a side-effect-free static single assignment (SSA) IR that yields

well to arithmetic simplification, linear algebra fusion and matrix multiplication re-

ordering. The optimised computation graph is lowered into LLVM IR and passed

3.2. Implicit Parallelism for Code Generation 45

to the LLVM compiler to generate GPU kernels leveraging the mature optimisation

passes of LLVM. The portability of DLVM comes at a high cost since each combina-

tion of IR primitives and target hardware needs to be optimised manually; performance

evaluation is yet to be provided.

Like DLVM, the Glow compiler [Rot18] uses LLVM as a backend to target new

architectures. Glow uses a two-level strongly-typed IR, in which DNN-specific nodes

are first lowered into linear algebra operators over tensors, and then converted into

an instruction-based representation. The optimisations of the high-level IR include

redundant node elimination, tiling and operator stacking, in which fused operators

are compiled into efficient kernels automatically without requiring to provide kernels

for all permutations of operators. The low-level IR is used to detect opportunities

to use hardware intrinsics, apply quantisation and optimise memory through layout

transformations, copy elimination and buffer sharing.

Dependence on hard-coded optimisation passes in Glow harms performance porta-

bility. Glow is outmatched by other compilers on GPUs [Li20]; the compiler lacks

design space exploration required to adapt computation graphs to target hardware per-

fectly. Adding support for new DNN architectures and hardware platforms requires

changing the Glow compiler itself, incurring high development costs.

The nGraph [Cyp18] DL compiler uses its internal stateless DAG IR to perform

high-level graph optimisation of an input DNN architecture; the lower-level optimi-

sations are outsourced to Intel oneDNN on CPUs, CuDNN on NVIDIA GPUs or

PlaidML on OpenCL GPUs. Similarly to LIFT, PlaidML uses a multi-level IR [Zer19]

to separate algorithms from implementations and hardware-specific optimisations, thus

preventing search space explosion. The PlaidML compiler uses the nested polyhedral

representation to capture parallel execution and memory hierarchies using its Tile and

Stripe IRs. However, PlaidML proved to be difficult to extend to new hardware ar-

chitectures due to the heuristics embedded into its performance model, and strong

assumptions made about the target memory structure and ISA [Bar19; Sot19; Pet20].

The Latte [Tru16] compiler supports operator fusion, cross-operator optimisations

and auto-tuning. Due to explicit indexing and the lack of type and shape inference,

Latte IR is verbose and does not yield well to transformations such as tiling, loop

fusion and interchange. This prevents Latte from matching the complex scheduling

hierarchy and partitioned memory architectures of GPUs.

46 Chapter 3. Related Work

3.2.4 Functional IRs

Like computational graph-based approaches, functional IRs benefit from the explicit

representation of the composability of the program. Like algorithmic skeletons, data-

parallel functional IRs capture computational patterns. Unimpeded by specific work-

load dimensions or hardware architecture, patterns constitute a fundamental model of

the computation, a blueprint. Such representation is scalable which is a useful property

for massively parallel and distributed accelerators.

The functional paradigm features extra properties that benefit parallelisation. The

lack of explicit control flow gives code generators some leeway in execution schedul-

ing. Stateless functions can be fused or otherwise transformed without an expensive

dependency analysis. Due to limited side effects and static typing, functional programs

yield well to correctness checks.

TVM builds on two functional IRs: the high-level ML-specific Relay IR [Roe18]

and the more generic Halide IR [Rag13]. Halide decouples computation from schedul-

ing by allowing users to specify a set of parametric schedules for exploration. Sec-

tion 3.3.2 discusses several auto-tuners proposed for schedule exploration. Extensions

for new platforms and custom operations are challenging with TVM since schedule de-

sign spaces must be implemented for each combination of custom operation and target

platform [Zer19]. The usage of explicit indexing in the front-end TVM IR compli-

cates transformations, requiring pattern-matching operations such as matrix multipli-

cation to detect opportunities to use hardware intrinsics and optimised micro-kernels.

Such an approach is inflexible on accelerators with deep memory hierarchy and built-in

coarse-grained operators.

The functional data-parallel IR of Futhark [Hen17] guarantees race-free semantics.

The compiler generates OpenCL and CUDA kernels targeting GPUs. Like LIFT, it pro-

vides a strong type system with multidimensional array support. Through uniqueness

types, Futhark addresses the common problem in functional approaches of data du-

plication through in-place updates. Through map interchange, distribution and fusion,

the compiler brings as much nested parallelism outwards as possible and parallelises

the outermost loops only. The loop transformation strategy is hard-coded, which puts

pressure on the programmer to choose whichmaps to interchange outwards.

Accelerate [McD13] is an established Haskell DSL for GPU computation. Like

Futhark, it focuses on rewriting the AST to expose more parallelism through loop

transformations. For scheduling, it relies on template skeletons, which are compiled

3.3. Parallel Code Optimisation 47

into CUDA code through template skeleton instantiation. This puts pressure on the

compiler to preserve the skeleton representation, limiting the choice of code transfor-

mations.

The functional NOVA compiler [Col14] generates C and CUDA kernels for CPU

and GPU respectively. NOVA supports nested parallelism, recursion and type poly-

morphism. Through the high-level IR and optimisation techniques such as aggressive

inlining and loop fusion, the compiler produces high-performance kernels automati-

cally. Parallelisation is achieved through vector flattening and unflattening.

3.3 Parallel Code Optimisation

We now look at four techniques used for parallel code optimisation. Section 3.3.1

discusses the efforts towards minimal, correct and efficient synchronisation primitive

placement. Section 3.3.2 covers automated tuning space exploration as a way to make

fine-grained design choices. Section 3.3.3 introduces parallelisation techniques which

use constraints to truncate the design space. Finally, Section 3.3.4 discusses ways to

capture human expertise to help the code generator produce efficient implementations.

3.3.1 Synchronisation Optimisation

Determining the minimal number of synchronisation points is an NP-complete prob-

lem [Mid86]. [OBo02] proposed a formalized method of inserting a provably minimal

number of barriers in perfect loop nests and some imperfect loop nests. A linear-time

algorithm for inserting barriers in general nested loops has been proposed in [Dar05].

[Tse95] uses communication analysis to reduce the synchronisation overhead through

superfluous barrier elimination.

The problem of determining the correctness of barrier placements has been pro-

posed in [Aik98]. The forward progress analysis has been applied to the inference

of termination guarantees of concurrent programs [Sor21]. The MLIR-based GPU to

CPU transpiler [Mos23] tackles synchronisation correctness by defining the barrier

operation in terms of its memory side effects.

These techniques have been applied to imperative programming languages such

as FORTRAN and CUDA. Complementary to these works, Section 5.4 contributes a

discussion of barrier insertion in the context of functional IR.

48 Chapter 3. Related Work

3.3.2 Auto-Tuning

A low-level implementation is often left parametric to adapt to small differences in

the workload dimensions, target platform specification and dynamic resource budgets.

The parameters are chosen heuristically or through explorative methods.

OpenTuner is a multi-objective tuner for domain-specific program optimisation

[Ans14]. It leverages a suite of search techniques combining random and heuristic

exploration to find the best parameter value combination. By running multiple search

techniques simultaneously, OpenTuner continuously evaluates the efficiency of each

and prioritises those fitting the problem domain. A general approach at its core, Open-

Tuner performs best on simple applications [Mul15] with no interdependencies among

the tuning paramaters [Ras21]. OpenTuner does not automatically detect invalid tuning

parameter value combinations.

CLTune [Nug15] and the Auto-Tuning Framework (ATF) [Ras18] use constraints

to truncate the search space to valid value combinations only, reducing the search time

by up to 9.5× [Ras21]. CLTune provides search techniques specialised for tuning

OpenCL kernels. ATF takes into account the interdependencies between parameters

to parallelise the search. It also replaces CLTune’s search space constraints with pa-

rameter constraints, preventing the exploration of entire ranges of invalid values. Both

CLTune and ATF depend on the user input and hardware specifications to provide

constraints, which presents a challenge for deeply nested applications with dozens of

tuning parameters.

PetaBricks [Pho13] goes beyond numeric tuning. Using a hardcoded choice de-

pendency graph, the compiler tunes design choices such as iteration order, data layout

and storage. User-specified tuning parameters are also set automatically. The search

proceeds using an evolutionary algorithm by testing each new candidate.

When parallelising the kernel, PetaBricks avoids deadlocks and race conditions by

analysing the program dependency graphs at compile time. Overall, the compiler does

not provide a strong correctness guarantee of the discovered solutions. PetaBricks

performs consistency checks by comparing the outputs of candidate implementations

to each other, and the user-provided reference implementation.

The Halide Autoscheduler [Ada19] uses a tree search algorithm to explore the de-

sign space of Halide schedules. The schedules express parallel mappings optimised

towards specific hardware targets. On GPUs, the search is limited by course-grained

heuristics such as assigning outermost loops to thread blocks. The cost model-based

3.3. Parallel Code Optimisation 49

AutoTVM [Che18b] achieves good performance on CPUs and GPUs, but the search

still requires good initial schedules, placing the burden on the user to provide perfor-

mance programming expertise [Sot19].

Recent work has focused on the parallelisation of TVM kernels through automatic

tuning. Ansor [Zhe20a] and FlexTensor [Zhe20b] provide auto-schedulers to explore

the search space of parallel mappings. The search efficiency in both auto-tuners is

limited by the user-provided set of handwritten parallel templates. Ansor can generate

invalid parallel mappings, resulting in search time wasted on the evaluation of bad can-

didates. The correctness issue has been addressed through formal correctness proofs of

Halide schedules [New20]. However, functional verification is yet to be demonstrated

on GPUs with an automated exploration approach like Ansor. The overall search time

in Ansor has been improved using transfer-tuning, where the tuning results are reused

among applications with similar operations [Gib22].

Bolt takes the auto-tuning approach of TVM programs further than AutoTVM and

Ansor by exposing the target hardware details to the auto-tuner [Xin22]. Bolt com-

bines the configurability of CUTLASS hardware-specific templates, profiling and auto-

mated search to find optimal template parameter values. Compared with the hardware-

agnostic search strategies of AutoTVM and Ansor, Bolt-optimised kernels achieve

2.5× faster inference in CNNs on average.

Numerous other cost model-based approaches have been proposed to navigate the

space of tuning parameters and parallel mappings [Mul16; Ada19; Sio18]. These

methods use predicted or profiling-based information to find better candidates faster.

These techniques are complementary to the contributions of this thesis, which focus

on inferring valid choices and incorporating user input effectively.

3.3.3 Constraint-Based Parallelisation

LIFT and Spiral [Fra18] are similar in their use of rewrite rules to transform a func-

tional IR for performance portability. Spiral also uses constraint satisfaction to ensure

valid parallelisation. Its IR focuses on macro operators such as Cartesian product, di-

rect sum and Kronecker product; the latter is used to capture parallelism. LIFT operates

on more generic low-level primitives such asmap andreduce.

The partially specified implementations IR [Bea19] expresses programs using scalar

arithmetic operators and iteration dimensions. The compiler transforms, parallelises

and vectorises the implementation through constraint satisfaction. LIFT IR is more

50 Chapter 3. Related Work

expressive thanks to its data layout transformations such as transpose. This allows

explicit control over coalescing and creates vectorisation opportunities.

The Sponge compiler solves the problem of portability by using the streaming lan-

guage StreamIt, thus abstracting the hardware details [Hor11; Udu09]. StreamIt cap-

tures parallelism through high-level patterns such as pipeline split-join and feedback-

loop. The data flow graph is partitioned across GPU cores using an Integer Linear Pro-

gram (ILP) solver, which uses profiling to guide the search. The parallelism constraints

presented in Chapter 5 are close in spirit to the resource and dependence constraints of

StreamIt.

Compared to StreamIt, the LIFT approach benefits from the functional IR in sev-

eral ways. LIFT imposes parallelisation constraints on functionalmaps, while StreamIt

generates constraints on filters, i.e., operations on data. Although the LIFT approach

requires more constraints, they are simpler. The data dependencies are captured im-

plicitly by the functional patterns over stateless operations, informing constraint gen-

eration only indirectly. The dependencies between the stateful filters of StreamIt are

captured explicitly within the constraints, resulting in less tractable constraint predi-

cates. Furthermore, the focus on the streaming programming model limits the range of

applications that are well-captured by the StreamIt IR.

3.3.4 User-Guided Optimisation

Human expertise in performance programming should not be completely discarded

in automatic code generators lest the compilation times suffer from the search space

explosion. Users should be able to communicate promising optimisational targets to

the compiler succinctly. At the same time, the IR should expose few implementational

details to maintain performance portability.

The TVM [Che18a] compiler achieves state-of-the-art performance across state-

of-the-art DNNs using Halide schedules [Li20]. The schedules expose transformations

such as tiling, different memory layouts, operator fusion, loop blocking and memory

prefetching. Schedules can also invoke tensorisation, instructing the compiler to map

operators onto device intrinsics. The intrinsics can be defined manually as part of

TVM’s larger effort to facilitate extension onto new backend libraries and accelerators

through backend API and fallback CPU implementations.

The extensibility of TVM is hindered by the strong coupling between the schedules

and the code generator. Adding new schedules requires altering the code generator to

3.3. Parallel Code Optimisation 51

support new transformations. TVM’s functional Relay IR [Roe18] is not guaranteed

to be compatible with a given schedule, and establishing compatibility is left up to the

user. Recent work on sparse tensor optimisations in Sparse Tensor IR suffers from the

same drawback [Ye22].

PetaBricks [Pho13] takes the separation of concern principle further: the user is

allowed to specify both the algorithm and a set of its valid implementations, leaving it

up to the compiler and runtime to choose the best candidate using an auto-tuner. The

auto-tuner uses an evolutionary algorithm to find the best solution empirically [Ans09].

The generated code is further optimised using static analysis. While highly extensible,

this approach limits the search to a set of manually provided implementations. In LIFT,

algorithmic choices remain transparent to the user. The compiler does not depend on

static analysis, exploring all optimisations at a higher level through rewrite rules.

Like PetaBricks, the Tangram code generator [Cha16; De 19] allows the user to

provide multiple implementations (“codelets”) of an algorithm (“spectrum”). The ex-

pressive power of the Tangram framework comes in part from the ability of codelets

to invoke other codelets. Tuning parameters are inserted automatically by codelets.

Search space explosion is prevented using a heuristic pruning policy. The pruning rules

prioritise solutions which extract more parallelism and achieve better access locality.

Recursive tunable transformations produce kernels that fit multiple diverse GPU archi-

tectures. Compared to PetaBricks, Tangram covers larger design space by pursuing

architectural optimisations.

This thesis takes a more multi-level approach to code optimisation than Tangram.

Tangram achieves task partitioning by expressing parallel mappings through codelets.

Since codelets are locally scoped, this approach does not consider parallel mappings

benefitting multiple codelets within the same kernel. On the other hand, LIFT splits al-

gorithmic transformations and parallel mapping search into two stages. Rewrite points

perform local transformations to tile computation without hard-coding a scheduling

policy. A constraint-based parallelisation pass explores the design space of the entire

resulting expression, as discussed in Chapter 5.

ELEVATE is an optimisation strategy language for defining program transforma-

tion sequences [Hag20a] A functional language itself, ELEVATE complements the

functional data-parallel language RISE [Hag20b]. With ELEVATE, users can define

composable transformation strategies to lower a high-level RISE expression to a target-

specific implementation. The correctness of strategies is proven using Agda. The RISE

compiler generates OpenMP code for CPUs and OpenCL for GPUs.

52 Chapter 3. Related Work

The strategy combinators of RISE are expressive means of controlling the rewrite

process and achieving macro-transformations. However, the burden is on the user to

define a robust rewriting sequence, where the strategies don’t cancel each other by

breaking the expected patterns. The compiler tackles this issue through intermediate

expression normalisation. By expressing the transformation directives (rewrite points)

and the algorithm in a single IR– a single source of truth – this thesis suggests a simpler

approach in Chapter 6. Upon application, rewrite points may introduce new rewrite

points into the transformed expression, and control their placement exactly. This helps

ensure that the new rewrite points pattern-match the transformed expression at no cost

to the user by shifting the burden onto the rewrite point designers.

3.4 Summary

This chapter has provided an overview of manual and automated approaches to GPU

programming. The IRs based on explicit parallelism allow adapting the implemen-

tations to the target platform by exposing the scheduling and memory management

primitives. This expressivity comes at the cost of performance portability. More flex-

ible are the high-level IRs capturing implicit parallelism. These IRs decouple the al-

gorithm from implementation, providing code generators with leeway to repurpose the

application for a given platform.

This chapter also covered several notable automated optimisation methods used

to translate high-level programs into optimised low-level API. However, parallel code

generation remains challenging due to the large design space. The next three chapters

discuss several issues in parallel code generation in depth and propose methods of

tackling the challenges.

Chapter 4

Functional IR for Auto-Tuning

This chapter focuses on the problem of expressing a low-level optimised convolution

in a functional IR. This chapter also shows how the functional patterns allow tuning

constraints to be inferred automatically. The constraints are useful to truncate the

search space to only valid implementations.

4.1 Introduction

CNNs dominate the field of computer vision and image processing [Fuk80]. Due to the

availability of parallel accelerators such as mobile GPUs, CNNs can be used to perform

these complex tasks on resource-constrained mobile devices. However, modern neural

networks are computationally demanding, yielding large memory footprints and slow

inference times, which has slowed their adoption in embedded settings.

Typically, CNNs have multiple convolution layers and one or more fully connected

layers. Most of their execution time is spent in convolutions – an expensive opera-

tion [Lai18]. Convolutions slide multiple kernels across a multi-channel 2D image

(e.g., the first input typically has three channels, RGB). The layer configurations vary

significantly across networks and even among the layers of the same network. For

instance, in VGG architectures [Sim14], the first convolutional layer operates on a

224×224 image with 3 channels while the seventh layer operates on a 112×112 image

with 128 channels. Moreover, the size and shape of convolutional kernels might also

vary between networks or layers. This diversity in convolution input shapes represents

a significant challenge for high-performance software engineers. In fact, obtaining

good performance for rapidly evolving networks, hardware and workloads is a signifi-

cant engineering challenge for library vendors relying on hand-coded solutions.

53

54 Chapter 4. Functional IR for Auto-Tuning

Most neural network libraries, such as Caffe [Jia14] for CPU and CuDNN [Che14]

for Nvidia GPU, solve this issue by expressing convolutions as General Matrix Mul-

tiply (GEMM), since heavily optimised implementations are readily available. While

this approach leads to higher performance, it significantly increases the required mem-

ory footprint, which can be problematic when running on mobile devices. For example,

a GEMM-based implementation of the second convolutional layer of VGG requires

116 MB of memory for a single image while the direct convolution requires only 13

MB. In the occasion where a large neural network needs to process multiple images at

once (e.g., from a video stream), the device memory can quickly fill up.

Support for direct convolution is uncommon in the high-performance kernel li-

braries given that it is a specialised operation in comparison with the more generic

GEMM. As a result, vendors typically do not invest as much effort in providing a

tuned direct convolution implementation. As an example, the ARM Compute Library

(v19.02, released in 2019) implementation of direct convolution only supports a hand-

ful of convolution shapes and is, in fact, 10× slower than its GEMM counterpart on the

ARM Mali GPU. This calls for an automatic approach that produces highly-specialised

high-performance code for direct convolutions.

This chapter presents an automatic code generation approach for direct convolution

based on LIFT. LIFT expresses algorithms using a functional data-parallel IR which

includes primitives such as map, reduce and zip. A system of rewrite rules optimises

LIFT expressions to specialise to the target architecture. Similarly to Futhark [Hen17]

and Accelerate [McD13], LIFT exploits several properties of a functional paradigm to

optimise compilation. The high-level IR abstracts away from the user the implemen-

tational details which would otherwise restrict the compiler from making design deci-

sions automatically: explicit array traversal ordering, loop parallelisation and bounds.

At the same time, the IR captures plenty of algorithmic meta-information, facilitating

static analysis and preserving semantics during program transformations. Finally, the

strongly typed functional patterns yield a robust and expressive type system.

The complexity of the convolution algorithm is a good example where strongly

typed functional patterns shine. The type systems of LIFT, Futhark and Accelerate

capture the shape of multidimensional inputs and naturally propagate the array trans-

formations imposed by the language primitives on respective dimensions. This enables

both fine-grained type-checking and program transformations that are correct by de-

sign.

This chapter provides a novel account of expressing low-level optimisations in a

4.1. Introduction 55

Tuning
Tuning constraint inference
Tiling tuning
Parallelisation tuning
Padding tuning

Low-level
lambda

Parametric

Low-level
lambda

Concrete
CNN Code Generation

Memory allocation
Barrier insertion

GPU kernel

Figure 4.1: The optimisation flow discussed in Chapter 4.

high-level IR such as LIFT. Convolution provides an interesting use case as a compute-

intensive problem, where several rounds of tiling and reshaping are required to match

the scheduling and memory hierarchies of a target platform. Such a complex use case

requires a flexible representation such as LIFT, where functional patterns expose fine-

grained parallelism in a high-level IR as opposed to the algorithmic skeletons imple-

mented in the target language as seen in Accelerate [McD13].

More specifically, this chapter shows how CNN convolutions are expressed and

optimised in LIFT using the process shown in Figure 4.1. Direct convolution optimi-

sation is achieved by exploring a parametric space which includes tile sizes, amount of

padding, amount of data reuse and the number of sequential operations performed by a

thread. A series of constraints are automatically produced to restrict the search to valid

combinations of tuning parameters (e.g., input size must be divisible by tile size). With

an ARM Mali GPU as a use case, LIFT is shown to achieve high-performance direct

convolution code that is on average 10× faster than the ARM Compute Library direct

convolution implementation while using ×3.6 less space than GEMM-based convolu-

tion provided by the same library.

Using LIFT as an example, this chapter discusses several properties of a functional

IR that facilitate static analysis during compilation. This includes data dependency

analysis for efficient synchronisation barrier insertion, which is aided by LIFT’s ex-

pressive strong type system and the view system. This also includes memory allocation

leveraging functional iterators as a higher level of abstraction over loops.

To summarise, the main contributions are:

• Show how tuning constraints can be automatically inferred from strongly typed

functional patterns to tune kernels automatically;

• Show how LIFT is leveraged to express the convolutional layers of neural net-

works;

• Produce code automatically for direct convolution, exploring a large optimi-

sation space of 1,000 points with LIFT, where the best candidate achieves a

56 Chapter 4. Functional IR for Auto-Tuning

1 def conv(inputData : [[[f loat]inChs]inW]inH,

2 kernelsWeights : [[[[f loat]inChs]kerW]kerH]outChs,

3 padSize : (int,int,int,int),

4 kernelStride : (int,int)) : [[[f loat]outChs]outW]outH =

5 toHost o oclKernel((slideWindows’, kernelsWeights’) ⇒
6 mapND2(slideWin: [T](inChs ∗ kerW ∗ kerH) ⇒
7 map(singleK: [T](inChs ∗ kerW ∗ kerH) ⇒
8 reduce(0, +) o map(*) << zip(slideWin, singleK)

9) << kernelsWeights’

10) << slideWindows’

11) << (mapND2(joinND2) o

12 slideND2(kerH, kerW, kernelStride._1, kernelStride._2) o

13 padND2(padSize, value = 0) o

14 toGPU << inputData,

15 map(joinND2) o toGPU << kernelsWeights)

Listing 4.1: High-level LIFT expression of convolution.

speedup of 10× and memory saving of ×3.6 over the ARM’s own high perfor-

mance library on the ARM Mali GPU.

The rest of the chapter is organised as follows. Section 4.2 discusses how convolu-

tion is expressed and optimised in a functional IR. Section 4.3 shows how tuning con-

straints can be inferred from a functional expression automatically, while Section 4.4

outlines the improvements to memory allocation made within this work. Section 4.5

describes the experimental setup used to evaluate proposed techniques and presents the

results of the evaluation. Section 4.6 summarises the chapter.

4.2 Optimising Convolution in LIFT

This section describes how a convolutional layer is expressed functionally in LIFT. We

first look at the convolution expression provided in Listing 4.1, which represents the

highest possible level in the LIFT IR. The expression is intentionally algorithm-centric

– it does not encode any decisions regarding parallelism and memory mappings, order

of operations or any other hardware-specific aspects. Also discussed are the low-level

optimisations required for high-performance direct convolution on a GPU, and how

they are expressed functionally. Chapters 5 and 6 discuss how these design decisions

are made automatically in LIFT.

4.2. Optimising Convolution in LIFT 57

Figure 4.2: Visualisation of direct convolution.

4.2.1 High-level LIFT Expression

Listing 4.1 shows the LIFT expression of a convolution layer with two arguments;

Figure 4.2 visualises the algorithm. inputData contains the layer’s input which is a

3D array (width × height × input channels). kernelsWeights contains the weights

of all the kernels across the width, height and input channels. padSize is a tuple of

four values that specifies how much padding is required in each direction by the layer

specification. kernelStride specifies by how much each kernel is displaced across the

input (the step). The output data is a set of feature maps represented as a 3D array with

the outer dimension corresponding to the number of kernels.

This LIFT program in Listing 4.1 consists of three steps. First, data is padded with

zeros on line 13 as per the configuration of the layer. Then, we slide in 2D across the

padded input along the two spatial dimensions (inW and inH) producing the sliding

windows on line 12; the sliding windows are used on line 10. Finally, convolution is

performed using a combination of LIFT primitives. First, we map over each sliding

window using mapND2 on line 6. Then, kernelsWeights are mapped over on line 7.

On line 8, we finally reduce over the flattened and zipped slideWin and singleK.

The zipping of slideWin and singleK ensures that the reduction operates on pairs

of corresponding elements from both arrays. The reduction operator multiplies the

corresponding elements and adds to the accumulator which is initialised with a zero.

The multidimensional operators such as padND2, slideND2 and mapND2 are imple-

mented as macros that are expanded into equivalent LIFT expressions that depend only

on one-dimensional primitives. Such design achieves concise representation without

overloading the language with redundant primitives. More details on multidimensional

58 Chapter 4. Functional IR for Auto-Tuning

operators are provided in Section 2.3.1.

4.2.2 Optimisations of Convolution on a GPU

Achieving high-performance direct convolution on a GPU comes with a number of

unique challenges. From the application side, difficulty is presented by the algorithm

being based on stencil computations, resulting in non-contiguous non-regular memory

accesses. From the target hardware side, the challenges are caused by the scarcity of

the on-chip memory on mobile GPUs and the generic complications of hierarchical

parallelism. Addressing these challenges in a functional IR makes for a significant

milestone; a gateway to supporting a wide range of simpler algorithms and less con-

strained platforms are supported. This section provides a list of example low-level

optimisations in the context of convolution. Section 4.2.3 discusses how these optimi-

sations are expressed in a functional IR.

4.2.2.1 Data Reuse

Convolutional layers are memory-bound due to the amount of data exceeding the on-

chip storage capacity. The input size is consistently large across CNN architectures

and specific layers. This is because smaller data sets can usually be parsed by leaner

analytical solutions. Similarly large are convolutional weights due to the redundancy

inherent to the ensemble Machine Learning method such as CNN, where individual

agents’ areas of expertise can overlap. The large amount of data requires that data is

processed in tiles that fit into the memory.

Beyond splitting the problem in manageable tasks that a mobile GPU can handle

and ensuring access locality, tiling helps achieve data reuse on the algorithmic level

in local or private memory. Convolution is applied on two arguments – inputs and

weights – and both have an independent dimension: different feature maps for inputs

and different convolutional kernels for weights. This can be leveraged by reusing a tile

of inputs across multiple convolutional kernels, and vice versa.

While data reuse improves kernel performance by reducing the number of memory

accesses, care must be taken not to allocate too many registers. High private memory

usage can have two negative consequences: register spilling and core undersaturation.

Register spilling occurs when a thread allocates more registers than available on the

hardware and some of the data is moved to a slower memory incurring a performance

overhead. However, even using fewer registers than available is not guaranteed to yield

4.2. Optimising Convolution in LIFT 59

maximum performance. The number of threads executed in parallel on a compute core

is determined by the register consumption of individual threads. The larger the register

consumption per thread, the fewer threads are scheduled by the GPU leaving ALUs

and memory buses underutilised.

4.2.2.2 Locality of Reference

In a memory-bound application such as convolution run on restricted hardware, reduc-

ing global memory usage is a priority. The disparity between the problem size and

available cache and private memory can be addressed through memory access local-

ity. By bundling accesses close in time and memory location, the compiler ensures

that data is fetched once and reused multiple times, increasing the amount of cheaper

compute operations per slow memory access.

Temporal Locality (TL) The number of cache misses can be reduced by optimis-

ing access patterns to process horizontally and vertically consecutive sliding windows

within the same work group. Since threads within a work group are scheduled to

execute in short intervals, the overlapping regions of neighbouring windows are also

requested in quick succession. The first load of the overlapped region is most expen-

sive because it accesses global memory directly. The subsequent accesses are cheaper

since the data is read from the cache. LIFT achieves such access pattern optimisation

through non-continuous input tiling discussed later in Section 4.2.3.1.

Cache reuse can be more effective in direct convolution as opposed to GEMM. The

im2col operation of the latter method’s preprocessing stage duplicates data in memory,

forcing the GPU to load each element anew on every read. Direct convolution depends

on the stencil access pattern to simulate overlapping windows, leaving it up to the

implementation to choose the number of accesses per element. In a convolutional

layer with 3x3 windows and a stride of 1, each element can be accessed up to nine

times. Assuming that Mali G72 cache of 512 KB is divided equally among inputs and

weights, and that there is only one input channel, the direct convolution method can

store up to 88× 88 = 7744 overlapping windows in cache. Conversely, GEMM can

cache only up to 910 im2col-processed windows, i.e., ×8.5 fewer windows.

Spatial Locality (SL) The number of memory accesses can be further reduced on

the Mali GPU through SL. SL is attributed to memory access patterns which iterate

over data elements within relatively small areas of memory. GPUs mask memory

60 Chapter 4. Functional IR for Auto-Tuning

access latency with increased bus bandwidth by fetching the entire cache line for each

read: requesting even a single word on a Mali GPU fetches 512 bits. The extra data

does not go to waste if all threads in a quad access data within a contiguous 512 bit-

wide area of memory. Fitting the data read by a quad in a single cache line improves

both performance and energy consumption [Arm20]. SL is achieved through memory

access coalescing discussed later in Section 4.2.3.2.

Thus, cache hit rate is improved in two ways. By optimising for TL and SL, the hit

rate of the entire cache is improved. Single cache line hit rate is optimised through SL.

4.2.2.3 Cache Line Optimisation

While memory access coalescing reduces the total number of cache lines read, it does

not address the problem of cache thrashing. Thrashing occurs when an excessive num-

ber of cache loads is requested simultaneously, and request scheduling overheads re-

duce performance. The 64 byte-wide cache line of a Mali GPU fits 16 floats; even

when coalesced, 16 threads issuing scalar float loads from the same cache line produce

at least 4 cache requests.

The number of requests to a single cache line can be reduced by vectorising the

data load, causing the GPU to issue one data request for all elements in a vector. For a

preferred size of 4 floats per vector, a vectorised load fetches 16 bytes simultaneously.

Combined with coalescing adjusted for vectorisation using a stride of 16 bytes, the size

of the atomic read increases fourfold covering the entire cache line. Issuing one mem-

ory request per thread quad achieves the best bandwidth while reducing the overhead

of memory thrashing.

4.2.2.4 Core Saturation

A GPU must be saturated on two levels: across compute cores and within each core. A

kernel executing on N cores should schedule at least N work groups; since synchronisa-

tion across cores is usually not supported, work groups are best suited for independent

tasks.

Work group size should be a multiple of warp size to ensure that course-grained

hardware units are not under-utilised. On a Mali G72, threads execute in quads: all

operations across the four threads of a quad are performed at the price of one. The

maximum number of threads executed simultaneously by a core is limited by the num-

ber of registers used within each thread.

4.2. Optimising Convolution in LIFT 61

4.2.2.5 Task Granularity

Fine-Grained Parallelism Long-living threads performing a lot of sequential work

result in core under-saturation, which necessitates splitting a problem into smaller tasks

to be performed in parallel. In convolution, achieving manageable tasks is not always

possible through straightforward tiling of independent input and weight dimensions.

Producing one output requires reducing an entire sliding window with the correspond-

ing weights; in VGG-16, one output requires processing up to 9.5 MBytes of data. To

fit the compute and memory capacity of a mobile GPU core, window reduction must

be tiled for threads to reduce each window tile independently, synchronise, then reduce

the intermediate results into a single output value.

Thread Coarsening Aggressive parallelisation strategies result in short-lived threads

and work groups, harming performance in two ways. First is the context switch over-

head associated with each return of a thread or a work group. This overhead can

be offset by increasing the amount of sequential work per thread. Second is the low

compute-to-memory load ratio – threads perform too few operations per each fetched

data element. Balanced threads reuse data in registers and cache by processing mul-

tiple inputs per convolutional kernel, and vice versa. Thread coarsening merges the

work of multiple threads into one, allowing sharing of the registers across more tasks.

Thread coarsening leads to more sequential work, which can result in core under-

saturation if taken to the extreme. The balance between parallelisation and thread

coarsening is found for the given problem dimensions and hardware specifications

through constrained tuning.

4.2.3 Low-level Optimisations in a Functional IR

This section discusses GPU-specific optimisations from the perspective of a functional

IR.

4.2.3.1 Tiling

As discussed in Section 4.2.2.2, horizontal and vertical tiling of inputs – non-continuous

tiling – improves cache usage through spatial and temporal localities. Support for

non-continuous tiling is also important in a functional IR for fine-grained control over

tile shape. In direct convolution, sliding windows are not continuous in memory: win-

dow rows are located on different rows of the input image. Due to this, tiling data

62 Chapter 4. Functional IR for Auto-Tuning

continuously is undesirable for two reasons. For a tile to cover at least one sliding

window completely, it must cover all the image rows that the sliding window is spread

across. This results in large tiles that either don’t fit into memory at all, or leave no

space for caching convolutional weights. Another way to leverage continuous tiling is

to include multiple sliding windows partially. Since a single output value of a convolu-

tional layer depends on all values of a sliding window, the thread producing the output

value must access multiple tiles; since only one tile at a time is loaded from global

memory, the thread needs to be blocked until extra tiles are loaded.

Furthermore, convolution input tiles must overlap to ensure that all sliding windows

are fully covered by at least one tile. This is an extra difficulty presented by direct

convolution with virtual sliding windows in contrast with the GEMM method, where

im2col-processed inputs can be tiled naively without overlapping.

Generally, a non-continuous overlapping tiling can be achieved with a slideND

pattern. For example, a matrix can be tiled in two dimensions as follows:

slideND2(tileH, tileW, tileStrideY, tileStrideX) << (matrix: [[T]M]N)

In a convolutional layer, slideStrictND primitive must be used to capture the

extra restriction on the tile size and stride requiring that the argument is covered by the

tiles fully.

In direct convolution expression which already uses theslide primitive to express

the stencil pattern, non-continuous overlapping tiling can be achieved using thesplit

primitive:

split(tileH) o map(split(tileW)) o

slideND2(kerH, kerW, kernelStrideX, kernelStrideY) << (input: [[T]M]N)

This approach is more straightforward compared toslideStrictND since correct-

ness of tiling does not depend on the chosen tiling stride. However, the tile size in

split-based tiling is expressed not in input values, but in the number of windows

stored in a tile. This is because the tilingslideStrictND is applied before the stencil

sliding, while the tilingsplit is applied after.

Data reuse in private memory is achieved by copying pairs of input and weight

tiles into private memory before iterating over them. This is achieved using the let

primitive:

4.2. Optimising Convolution in LIFT 63

1 let(prefetchedInputTile ->

2 let(prefetchedWeightsTile ->

3 map(x ->

4 map(w -> f(x, w)

5) << prefetchedWeightsTile

6) << prefetchedInputTile

7) o map(toPrivate(id)) << weightsTile

8) o map(toPrivate(id)) << inputTile

Where id is the identity function.

4.2.3.2 Coalescing

For spatial locality of reference, a functional IR expresses coalescing usingtranspose,

split andjoin patterns. Consider the following example:

mapLcl(dim, mapSeq(f)) o split(s) << (x: [T]N)

Where parallel accesses occur with a stride of s. If s is larger than cacheLineSize
warpSize× elementSize

where elementSize refers to the number of bytes required to store the scalar or vector

element, then each warp accesses more than one cache line underutilising each fetched

line. If s is smaller than the preferred vector size, then the compiler is prevented from

vectorising the load.

Coalescing can be achieved by transforming the example above as follows:

join() o transposeW() o

mapLcl(dim, mapSeq(f)) o transpose() o split(s) << (x: [T]N)

Wheretranspose transforms the view of x such thatmapLcl is applied on the inner

(contiguous) dimension and mapSeq is applied on the outer dimension. transposeW

reverts the transposition such that the output layout matches that of x. In this particular

transformation, threads access contiguous elements of x, guaranteeing no more than

one cache line read per thread quad. A further transformation where x is vectorised

usingasVectorwould ensure that the entire cache line is used by the quad, and reduce

cache thrashing.

4.2.3.3 Padding

The padding expression has a dual purpose. First, it pads the input with zeros along

all four edges as per the neural network architecture. Secondly, it zero-pads the input

64 Chapter 4. Functional IR for Auto-Tuning

across the right and bottom edges so that the resulting array can be perfectly tiled.

Padding is performed along only two out of four edges to minimise extra fragmentation

of input data. The amount of padding ρ is determined automatically by a constraint

solver and is explained later.

Consider the following example, where two-dimensional input is padded with ρ

zeros along each of the four edges:

mapSeq(mapSeq(f)) o pad2D(ρ, ρ, ρ, ρ, 0.0f) << (input: [[T]M]N)

This expression corresponds to the following OpenCL loop nest, where x and y

are defined on padded ranges, and the inline if-conditionals ensure that out-of-bounds

accesses are replaced with a literal zero:

1 for (int y = 0; y < N + 2*ρ; y++) {

2 for (int x = 0; x < M + 2*ρ; x++) {

3 buf[x + y * (M + 2*ρ)] = f(

4 y < ρ ? 0.0f :

5 y >= ρ + N ? 0.0f :

6 x < ρ ? 0.0f :

7 x >= ρ + M ? 0.0f :

8 input[x - ρ + (y - ρ) * (M + 2*ρ)]); }}

The padding expression is compiled into a separate preprocessing OpenCL ker-

nel that is executed separately from convolution. Since pad2D introduces an inline if-

conditions, hoisting padding into a separate kernel mitigates the overheads of thread di-

vergence, leaving the most compute-intensive operation – convolution – free of branch-

ing.

4.2.4 Low-Level LIFT Expression

As shown in Listing 4.1, convolution is expressed as a set of reductions of sliding

windows. However, in popular deep CNNs such as VGG, ResNet and GoogleNet,

most convolutional layers are wide to such an extent that the whole input does not

fit in the cache (e.g., L2). This issue is addressed by tiling the input and splitting

reduction into two steps. In the first stage of partial convolution, input is tiled, each

sliding window of each tile is split into chunks, and each chunk is reduced to a single

value. In the second stage of final convolution, the resulting vector of values per sliding

window is reduced to one final value in the same GPU kernel.

4.2. Optimising Convolution in LIFT 65

image

tile

grp1 grp2 grp3

kernels

tile

grp

window

flattened
window

flattened
kernels

chunks

Figure 4.3: Visualisation of the low-level LIFT expression in Listing 4.2.

To ensure that the tiles fit perfectly with the input sizes, extra padding might be

required on the input using another GPU kernel before processing the data. Conversely,

an extra GPU kernel might be required at the end to crop back the output. The four

stages are discussed below.

4.2.4.1 Partial Convolution

Figure 4.3 presents an overview of the partial convolution implementation in List-

ing 4.2. Acquiring input image and a set of convolutional kernels, the expression splits

the image into tiles and kernels – in kernel groups. Each combination of a tile and

kernel group is processed by a single work group on lines 18 and 19 in Listing 4.2

respectively. Then, a window of the spatial size kerW × kerH is slided across the tile.

This results in a set of sliding windows, which at this point are just virtual views into

data, produced usingslideND2 on line 7.

Each sliding window is flattened across two spatial dimensions and input channels,

and split into chunks on line 13. Each chunk is reduced sequentially by a single thread

on line 24. Each thread can process chunks from more than one sliding window, tra-

versed by a mapSeq on line 29. Each kernel is split into chunks correspondingly by

flattening the three kernel dimensions and splitting with the same chunk size as that of

the input chunks on line 16. Each sliding window chunk is coupled with corresponding

chunks in each of the kernels in the group. A thread processes each pairing of the input

chunk with the kernels in a kernel group.

Processing each input-kernel chunk pair involves multiplying input values and cor-

responding weights, and summing the resulting vector on line 30. Thus, each sliding

window is reduced to a vector of values, corresponding to each chunk in the sliding

66 Chapter 4. Functional IR for Auto-Tuning

1 def partConv(paddedInput : [[[f loat]inChs]paddedInW]paddedInH,

2 kernelsWeights : [[[[f loat]inChs]kerW]kerH]outChs,

3 kernelStride : (int, int)

4) : [[[[[f loat]windowSize/ω]κ]σ]nWindowsInTile/σ]outChs/κ]nTilesInInput = {
5 val tiledInput4D = join(slideND2(θ, tilingStride. 1, tilingStride. 2)

6) << paddedInput

7 val tiledSlidedInput5D = map(join(slideND2(kerH, kerW,

8 kernelStride. 1, kernelStride. 2))

9) << tiledInput4D

10 val windowSize = inChs∗ kerW ∗ kerH

11

12 val doubleTiledSlidedCoalescedChunkedVectorisedInput6D = map(tile4D ->

13 split(σ) o map(optimiseWindow) << tile4D) << tiledSlidedInput5D

14

15 val groupedCoalescedChunkedVectorisedKernelsWeights5D =

16 split(κ) o map(optimiseWindow) << kernelsWeights

17

18 mapWrg(1, inputTile5D ->

19 mapWrg(0, kernelsGroupWeights4D ->

20 mapLcl(1)(inputWindowsGroup4D ->

21 mapLcl(0)((chunkAcrossWindowGroup3D,

22 chunkAcrossKernelGroup3D) ->

23 mapSeq2D(toGlobal(id)) o join() o

24 reduceSeq(

25 init = mapSeq2D(toPrivate(id)) << value(0, [[f loat]σ]κ),

26 f = (acc2D, (windowGroup2D, kernelGroup2D)) ->

27 let(windowGroup1D -> let(kernelGroup1D ->

28 mapSeq((acc1D, kernelVec) ->

29 mapSeq((acc, inputVec) -> acc +

30 vectorise(υ, multAndSumUp(inputVec, kernelVec))

31) << zip(acc1D, windowGroup1D)

32) << zip(acc2D, kernelGroup1D)

33) << mapSeq(toPrivate(vectorise(υ, id))) << kernelGroup2D

34) << mapSeq(toPrivate(vectorise(υ, id))) << windowGroup2D

35) << zip(transpose(chunkAcrossWindowGroup3D),

36 transpose(chunkAcrossKernelGroup3D))

37) << zip(transpose(inputWindowsGroup4D),

38 transpose(kernelsGroupWeights4D))

39) << inputTile5D

40) << groupedCoalescedChunkedVectorisedKernelsWeights5D

41) << doubleTiledSlidedCoalescedChunkedVectorisedInput6D }

tiling

sliding

thread coarsening
flattening

coalescing
vectorisation

tiling

tiling

vectorised dot product

vectorised prefetch

Listing 4.2: Low-level LIFT expression of partial convolution. Expression

optimiseWindow is defined in Listing 4.3.

4.2. Optimising Convolution in LIFT 67

1 def optimiseWindow(window : [[[f loat]inChs]kerW]kerH

2) : [[f loatυ]ω/υ]windowSize/ω = {
3 val windowSize = inChs∗ kerW ∗ kerH

4 val flatWindow1D = join(join(window))

5 val flatCoalescedWindow1D =

6 reorder(striddenIndex(windowSize/ω)) << flatWindow1D

7 val flatCoalescedChunkedWindow1D = split(ω) << flatCoalescedWindow1D

8

9 asVector(υ) << flatCoalescedChunkedWindow1D }

flattening

coalescing

chunking

vectorisation

Listing 4.3: A window preprocessing expression. Applied on both inputs and weights on

lines 13 and 16 of Listing 4.2, it transforms data layout of a single window virtually to op-

timise memory accesses. The window is flattened, reordered for coalesced accesses,

tiled and vectorised.

window. This is partial reduction; another expression further reduces the vector to each

value resulting in a full convolution of each sliding window to a single output value.

Partial reduction is the main focus of optimisation in this design, since most work is

performed during partial reduction if the chunk size is sufficiently large. Small chunk

sizes shift the computational burden to the final convolution stage, but at the cost of

missed opportunity to reuse input and kernel values. Very large chunk sizes result in

too much sequential work and under-saturation of the compute cores.

Listing 4.2 shows the partial convolution algorithm in LIFT. First, the input is tiled

usingslideND2 and the 2D array of tiles is flattened (line 6). The tile size is controlled

by the parameter θ and the stride is calculated to minimise the amount of tile overlap:

tilingStride = θ− (kernelWidthHeight− kernelStride)

Convolution within each tile is expressed by nesting a second slide2D on line 9.

This new five-dimensional view of the input data is further transformed using the inner

expression on line 1. The 3D sliding window and convolutional kernels are repre-

sented as flat vectors; this simpler data layout enables coalescing of data accesses us-

ingreorder, an important GPU optimisation that improves locality. The elements are

virtually reordered with the stride of windowSize/ω, where ω refers to the size of the

partial window processed by one thread. The resulting stride is the number of threads

processing the same window, ensuring each thread access consecutive elements. The

68 Chapter 4. Functional IR for Auto-Tuning

Table 4.1: OpenCL dimension sizes defined in terms of tuning parameters

Dimension Size

Work group dim. 1 Number of tiles in the input

Work group dim. 0 Number of kernel groups

Thread dim. 1 Number of sliding window groups in a tile

Thread dim. 0 Number of sliding window partitions

window is vectorised with vector length υ which is important for the Mali GPU. Fi-

nally, windows are split in groups; each thread will process chunks from the whole

group of sliding windows.

Lines 20 to 22 express mapping of parallel computations onto OpenCL threads; for

the sizes of the respective work group dimensions, see Table 4.1. In dimension 1, each

work group processes one input tile; in dimension 0, each work group is assigned one

group of convolutional kernels. The grouping of kernels is expressed on line 16; the

size of a kernel group is controlled by the parameter κ.

In local dimension 1, threads are assigned an input window group. In local dimen-

sion 0, threads are assigned a chunk of each input window in a window group and a

chunk of each kernel in a kernel group. By reading the input window chunk only once

and reusing it for κ kernels within the same thread, the number of reads is reduced by a

factor of κ. By reading the kernels once and reusing them for σ sliding windows within

the thread, the number of reads is further reduced by a factor of σ. By iterating across

the fastest changing dimension 0 in the innermost loop, the quad threads are guaran-

teed to access consecutive window chunks; thanks to the prior coalescing now stored

in the view, quad threads access consecutive locations in memory further reducing the

number of reads by a factor of four.

The reduction of the partial window across several kernels is expressed on line 24:

the accumulator is initialised to a vector of κ zeros on line 25 and the input toreduceSeq

on line 35 is an array of tuples of partial window elements and corresponding elements

from kernel weights.

The first let primitive on line 27 ensures that the input values are fetched into the

private memory once on line 34 and are reused across iterations of the sequential loop

on line 29. Similarly, a group of kernel values is prefetched on line 33 and reused

across the iterations of the loop on line 28.

4.2. Optimising Convolution in LIFT 69

4.2.4.2 Summing Partial Results

The third expression completes convolution by reducing the partial weighted sums of

each window. Each work group processes a single tile for a single kernel group; each

thread reduces one or more sliding windows in one output channel.

A straight-forward reduction is applied on the result of the outermapLclon line 20

of Listing 4.2; the barrier insertion pass discussed in Section 5.4 synchronises the two

convolution stages if necessary using a barrier. Since summing the intermediate results

is not an compute-intensive operation, there is no benefit in tiling the final reduction

expression or re-tuning the work group dimensions.

4.2.4.3 Cropping

The final expression reverses the effect of the extra padding performed in the first

expression. It crops the output using pad2D with negative values for padding sizes.

The amount of horizontal and vertical cropping is calculated as:

cropSize =
ρ

kernelStride

The cropSize is guaranteed to be whole by the slide constraint discussed later in

Section 4.3.

4.2.4.4 Summary

The section has shown how fine-grained hardware optimisations are achieved in a func-

tional IR. It has also presented a low-level LIFT expression combining multiple optimi-

sations. The presented example makes a case for the expressiveness of a functional IR

in the context of parallel programming. Despite the focus on algorithm representation,

an IR such as LIFT is flexible enough to support fine-grained optimisations of a parallel

program. We will see in Chapters 5 and 6 how the application of these optimisations

is simplified through automatic parallelism mapping and guided rewriting.

4.2.5 Tuning Parameters

The performance of the low-level expression presented in Listing 4.2 depends on the

tuning parameters injected into the expression. These parameters (Table 4.2) represent

design choices that can be explored automatically. Before introducing the constraint-

based exploration mechanism in Section 4.3, this section discusses how the parameters

affect the performance of the generated program.

70 Chapter 4. Functional IR for Auto-Tuning

Table 4.2: Convolution expression tuning parameters

Symbol Parameter

θ Input tile size

ρ Optimisational padding size

κ Number of kernels per work group

σ Number of sliding windows per thread

ω Sequentially processed input elements

υ Vector size

Input Tiling Splitting the input optimises cache locality by ensuring that adjacent

threads process the same neighbourhood. The tile size is explored in the range from

the kernel size to double the padded input size.

Padding Changing the input size solves the problem of finding an efficient tile size

that both splits the input evenly and can be evenly split by the convolutional kernels.

Though time might be wasted on processing dummy data, padding achieves better data

alignment and cache locality.

Kernel And Sliding Window Grouping Processing multiple kernels and sliding win-

dows per thread results in data re-usage: input data is fetched once into private memory

and is reused during output channel computation; the same for the weight coefficients.

The benefit of increased re-usage is a tradeoff since large values of κ increase register

pressure.

Sliding Window Chunking Each sliding window and kernel are flattened and split

into chunks, processed sequentially within threads. Smaller values for chunk size result

in more parallel operations. Varying the amount of sequential work allows to explore

work group sizes which influences register consumption and maximum occupancy of

the compute cores.

The Need for Constraint Inference Such a large number of tuning parameters presents

a challenge, especially if cross-platform and cross-domain performance portability is

required. Many tuning parameter value combinations break language semantics, e.g.,

tile sizes that are not factors of the argument array size. Enumerating these invalid

4.3. Constraint Inference 71

combinations is not feasible. Similarly costly is hard-coding the constraints on the pa-

rameters. Constraints are unique to the low-level LIFT expression, which is domain-

and platform-specific; furthermore, the total number of constraints per expression is

large. Constraints are also predicated on the rewriting process, which is required for

a more comprehensive optimisation workflow. Automatic transformations of an AST

such as parallelisation, vectorisation, coalescing and unrolling may introduce, change

or remove both constraints and tuning parameters.

Constraint dependence on the input expression and the choice of rewrites, as well as

the search space size call for an automatic approach to constraint generation. The next

section describes the mechanism of automatic constraint inference. By removing the

need to enumerate tuning parameters and constraints manually, this approach allows

tuning rewritten expressions, where the number and positions of tuning parameters

in the AST are unknown in advance. Chapters 5 and 6 illustrate the radical AST

transformations where automatic constraint inference truly shines.

4.3 Constraint Inference

When exploring the search space of possible implementations, the compiler leverages

rich algorithmic information captured by the LIFT IR. Type safety and provable cor-

rectness of rewrite rules allow to automatically explore structural code transformations

that would otherwise require costly static analysis.

LIFT supports symbolic parameter values in the multidimensional array types. Pa-

rameter tuning consists of finding valid combinations of symbolic parameter values,

replacing them at the type level and generating a specialised implementation. This

leads to GPU kernels that are specialised for the given input parameters and tuning

values.

The expressiveness of LIFT and the complex search space produced by rewriting

results in a high number of dependent and independent parameters which is hard to

analyse manually. To address the problem of parameter validation, the compiler infers

constraints automatically based on the information encoded in the IR and the type

system. By traversing the AST, it collects variables from types and the parameters

of the IR primitives, and infers continuous and discrete constraints on the parameter

values. A constraint is expressed as a record specifying the condition that must hold

true and the list of parameters the condition is imposed upon. The next section presents

the novel work of automatically deriving constraints from a LIFT expression.

72 Chapter 4. Functional IR for Auto-Tuning

4.3.1 Constraint Types

This section presents five types of constraints inferred from the expression. Although

this looks like a small space, the convolution expression in Listing 4.2 produces 104

instances of the algorithmic and hardware-specific constraints. The power of this ap-

proach is simplicity: only a small number of LIFT primitives is used to achieve multiple

optimisations.

4.3.1.1 Algorithmic Constraints

Algorithmic constraints are inferred based on the type of an IR primitive and the values

of its parameters. Satisfying such constraints is required for producing semantically

correct results. For thesplit primitive, the first inferred constraint is as follows:

split : (m : int, in : [T]n)⇒ n % m = 0 (4.1)

This constraint ensures that the split input is divisible evenly into chunks of m

elements. The compiler traverses the arithmetic expression of the condition n%m =

0 and collects all the parameters; they are marked as co-dependent for the sake of

establishing parameter evaluation order during constraint satisfaction.

Two more constraints are inferred from thesplitprimitive to ensure that the chunk

size is larger than zero and does not exceed argument size:

split : (m : int, in : [T]n)⇒ m > 0

⇒ m≤ n
(4.2)

Section 4.3.3.2 discusses how inequality constraints can be leveraged to not only

ensure valid parameter values, but to optimise search through parameter range reduc-

tion.

asVector imposes similar constraints to those ofsplit:

asVector : (m : int, in : [T]n)⇒ n % m = 0

⇒ m > 0

⇒ m≤ n

(4.3)

slide comes in two conceptual flavours based on the constraints it imposes on

the variables. The slideStrict requires that the sliding window covers the input

perfectly:

slideStrict : (size : int, step : int, in : [T]n)⇒
(n− size)

step
+1 = 0 (4.4)

4.3. Constraint Inference 73

slideStrictmust be used for tiling, when the input data has to be partitioned en-

tirely and without stepping outside of the input boundaries. For kernel sliding, normal

slide is used since sliding is allowed to produce partial results and the constraint 4.4

is not required. A notable example is the first layer of AlexNet [Kri12].

Finally, bothslide andslideStrict entail the following constraints:

slide(Strict) : (size : int, step : int, in : [T]n)⇒ size > 0

⇒ size≤ n
(4.5)

4.3.1.2 Hardware Constraints

The specifications of the target hardware impose constraints on the maximum amount

of threads in a single dimension, work group size, total memory allocated and maxi-

mum single buffer size. These constraints can be inferred by calculating the minimum

resources necessary to compute an expression and matching them against respective

OpenCL driver information.

4.3.2 Constraint Solver

When starting from a low-level LIFT expression whose AST is finalised to include

tiling, parallelisation, vectorisation, coalescing and unrolling, the compiler uses the

following search strategy. Firstly, the expression is traversed to collect tuning param-

eters and constraints. Next, parameters are sorted in the order of exploration – for

example, if the parameter A depends on the parameter B, B needs to be evaluated

first. To find this ordering, the compiler represents the collection of constraints as a

Directed Acyclic Graph (DAG) and sorts it topologically. The resulting partial sorting

order is finalised by imposing a random order on the unsorted groups of parameters.

The derived parameter order is used to incrementally generate random combination of

parameter values that satisfy all the constraints.

4.3.3 Search Space Simplification

Multiple levels of tiling of inputs, convolutional weights and intermediate results of

reduction can result in a large number of tuning parameters, and increase the complex-

ity of constraint satisfaction exponentially. Due to transposition and reordering used

to achieve access coalescing and memory locality, the array sizes, and, consequently,

the arithmetic expressions in the inferred constraint predicates can become non-linear

74 Chapter 4. Functional IR for Auto-Tuning

and slow to solve. The ranges of predicate expressions are sparse and yield poorly

to simplification by the constraint solver. The problem can be alleviated using a few

simple techniques to reduce the numbers of parameters and constraints, shrink tuning

parameters ranges and simplify constraint predicates for faster constraint satisfaction.

4.3.3.1 Constraint Simplification

LIFT leverages its arithmetic simplification library to prune constraints whose pred-

icates are entailed, i.e., true for all values of tuning parameters. The compiler may

perform this simplification thanks to the information inferred from the IR, such as

loop iterator ranges and the iteration step.

Examples of entailed predicates encountered among the constraints listed in Sec-

tion 4.3.1 are following:

a+ x > 0, if a > x (4.6)

ax % b = 0, if a % b = 0 (4.7)

a > x in the predicate 4.6 can be determined by checking the range bounds of a. a % b

in the predicate 4.7 can be determined if a is provably multiple of b based on their

ranges or if they are literals.

The same predicate can be generated from different subexpressions within the same

AST. For example, the following expression produces the same constraint n % m = 0

from bothsplit andasVector:

asVector(m) o join o map(f) o split(m) << (x : [T]n)

Arithmetic simplification is also leveraged to detect duplicate constraints. When

equivalent arithmetic expressions in the constraint predicates can be simplified to the

same normal form, a trivial equivalence check allows to prune non-unique constraints.

Example duplicate predicates are following:

((x2 +2xy+ y2)% a = 0) and ((x+ y)2 % a = 0) (4.8)

((
x
a
+

y
a
)% b = 0) and (

x+ y
a

% b = 0) (4.9)

The symbolic expressions in the constraint predicates and tuning parameter ranges

are simplified by substituting convolutional layer configuration parameters early. By

restricting the search to one convolutional layer at a time, the compiler can replace

the input and weight dimensions with literal values. The simplified constraints either

4.3. Constraint Inference 75

contain no parameters and can be pruned under the assumption that they are guaran-

teed to be always true, or contain fewer parameters allowing further pruning through

uniqueness and parameter range reduction checks.

4.3.3.2 Tuning Parameter Range Reduction

When choosing tuning parameter values, the constraint solver picks candidate values

randomly and checks them against the set of constraints. The range size of the pa-

rameters can have a significant effect on the search duration if the ratio of incorrect to

correct values covered by the parameter range is large. Thus, care must be taken to

choose the minimum range that covers all correct values.

The naive approach of setting the bounds to (0, maximum parameter type value)

is suboptimal for the GPU kernel tuning parameters that tend to have relatively small

ranges: tile sizes, vector lengths and thread configuration. Setting the bounds manu-

ally based on the problem size requires hardcoding the parameters to the given prob-

lem dimensions, target hardware specifications and the specific optimisation design.

Instead, the proposed technique picks the smallest possible range based on the con-

straints generated from the AST as discussed in Section 4.3.1. More specifically, LIFT

pattern-matches the inequality constraints of the following form:

t [< | ≤ |> | ≥] x (4.10)

Where t is a single tuning parameter, and x is an arithmetic expression that has no

tuning parameters and can thus be evaluated statically. Such constraints are further

referred to as bound constraints. The compiler uses bound constraints to increase or

decrease the lower or the upper range bound of the parameter t and discards the bound

constraints. This approach reduces the number of parameter values to be checked

by the solver; it also reduces the total number of constraints to check for all candi-

dates since the bound constraints are now enforced through parameter range. The total

number of tuning parameters is decreased as well when the corresponding ranges are

reduced to single values.

Algorithm 2 presents the full parameter range reduction algorithm. After the initial

collecting of bound constraints on line 3, the compiler reduces the ranges of respective

parameters on line 9. For each parameter with reduced range t1, the compiler propa-

gates the changes to all other tuning parameters and constraints that depend on t1 on

lines 14 and 18 respectively. Consider the following initial set of tuning parameters T

76 Chapter 4. Functional IR for Auto-Tuning

Algorithm 2: Tuning Parameter Range Reduction.
input : Set of tuning parameters T

input : Set of constraints C defined on T

output: Reduced set of tuning parameters T ′ with reduced ranges

output: Reduced set of constraints C′ defined on T ′

1 T ′←T

2 C′←C

3 B← bound constraints in C′ with at most 1 tuning parameter

4 while B is not empty do

5 foreach constraint b in B do

6 remove b from B

7 remove b from C′

8 t1← the tuning parameter bound by constraint b

// Reduce the range of t1

9 move the lower or upper bound of t1 according to b

10 if size(t1.range) == 1 then

11 remove t1 from T ′

// Reduce the ranges of the parameters that depend on t1

12 foreach parameter t2 in T ′ where t2 is not t1 do

13 if t2.range is bound by t1 then

14 simplify the lower or upper bound of t2 with t1

15 if size(t2.range) == 1 then

16 Remove t2 from T ′

// Simplify the constraints whose parameter ranges were reduced

17 foreach constraint c in C′ do

18 simplify c based on T

19 if c == true then

20 remove c from C′

21 B← bound constraints in C′ with at most 1 tuning parameter

4.4. Memory Allocation 77

and constraints C:

T = {t1 : [1..b],

t2 : [1..
ab
t1
],

t3 : [1..d],d > e}
C = {c1 : t1 ≥ b,

c2 : t3 ≤
et2
a
}

(4.11)

Where a,b,d,e are non-parametric arithmetic expressions. Initially, C contains only

one bound constraint which depends on one tuning parameter: t1. By using c1 to

update the lower bound of t1, Algorithm 2 reduces the range of t1 to one value: [b..b].

Now, t1 and c1 do not need to be evaluated by the constraint solver and do not have to

be included in T ′ and C′ (the updated versions of T and C correspondingly). The range

of t2, which depends on t1, is also updated:

T ′ = {t2 : [1..
ab
b
],

t3 : [1..d],d > e}

C′ = {c2 : t3 ≤
et2
a
}

Next, the compiler simplifies the range of t2 to [1..a]. Since t2 is now no greater than

a, c2 entails that c2 : t3 ≤ et2
a ≤ c2 : t3 ≤ e. Thus, t3 range can be reduced from [1..d] to

[1..e]:

T ′ = {t2 : [1..a],

t3 : [1..e]}

C′ = {c2 : t3 ≤
et2
a
}

c2 cannot be removed from C′ since it depends on t2, which can take more than one

value. Thus, Algorithm 2 eliminates one parameter and one constraint given initially

in Equation (4.11), and reduces the ranges of the remaining tuning parameters.

4.4 Memory Allocation

The challenge of tuning is often to find a balance between opposing effects. Reduc-

tion tiling comes with a trade-off of memory consumption versus performance. Small

78 Chapter 4. Functional IR for Auto-Tuning

mapWrg(0)(mapLcl(0)(

mapSeq(toGlobal(f)) o mapSeq(toLocal(g))

)) << (x: [[[T]K]M]N)

Listing 4.4: Example expression with a shared intermediate buffer

sliding window tiles result in more parallel work at the cost of increased intermediate

memory consumption.

For a fair evaluation of tuning effects on memory consumption, the LIFT compiler

must allocate the minimum amount of memory required for convolution. The rest of

this section presents this thesis’ contribution to memory allocation – an intermediate

buffer size inference method in functional expressions.

4.4.1 Intermediate Versus Output Buffers

LIFT allocates one buffer for each user function to store its results. Section 2.3.2.3

describes how the position of a user function in the AST determines the size of its

buffer, e.g., nesting the user function in a loop increases the size of the output buffer

by the number of loop iterations. Special care must be taken for intermediate memory,

i.e., the buffers consumed by the user functions and not returned as the output of the

entire LIFT program.

Since intermediate results do not need to be preserved beyond the invocation of the

consumer user function, the same intermediate buffer can be reused across all invoca-

tions of the consumer UF. Although this opportunity to reuse a buffer is straightforward

to detect when the intermediate data is produced and accessed sequentially, paralleli-

sation requires a more sophisticated approach. The prior work treats the intermediate

and output buffer allocation the same; this results in missed opportunities to reduce

memory consumption. We now look at the example illustrating the difference between

the intermediate and output buffer allocation.

Example Consider the expression in Listing 4.4, where the UF g is applied on each

element of the 3D array x, the UF f is applied on each element of the result of g and

the result of f is returned as the output. The outermost dimension of x is mapped onto

work groups in dimension 0; the middle dimension of x is mapped onto local threads

in dimension 0. UF g is mapped onto each sub-array of size K sequentially, and the

4.4. Memory Allocation 79

mapWrg(0)(mapSeq(

mapLcl(0)(toGlobal(f)) o mapLcl(0)(toLocal(g)))

) << (x: [[[T]K]M]N)

Listing 4.5: Example expression with a non-shared intermediate buffer

result is put into a local buffer; that local buffer is read sequentially during invocation

of UF f.

Output buffer size is determined trivially: since a global buffer is accessible by

both work groups, local threads and sequentially, the output size of f is multiplied by

the number of iterations inmapWrg(0),mapLcl(0) andmapSeq:

sizemem f = N×M×K

An intermediate local buffer can only be accessed within a single work group, hence

there is no need to multiply the buffer size by the number of work groups:

sizememg = M×K

In the expression in Listing 4.5, local threads are sequentially applied on the M chunks

of K elements, so the intermediate buffer size can be reduced further. Since memg

needs to hold only K elements until they are read by f and are not needed anymore,

the compiler needs to allocate enough space for only one iteration ofmapSeq:

sizememg = K

Both Listings 4.4 and 4.5 illustrate the importance of considering parallel mappings of

nested loops for memory allocation. Listing 4.5 also shows that function composition

needs to be considered to allocate intermediate buffers more sparingly than output

buffers. Prior LIFT work allocated intermediate and output buffers in the same way,

scaling the buffer sizes based on the parallel mappings of the nested loops and the

ASs of the buffers. This approach still results in optimal memory allocation in the

Listing 4.4, since considering the work group parallelisation of mapWrg(0) and the

local AS of memg is sufficient to determine the size of memg as M×K. This technique

comes up short in Listing 4.5, where the buffer size multiplier of mapSeq must be

propagated only onto the buffer mem f , not memg.

80 Chapter 4. Functional IR for Auto-Tuning

4.4.2 Intermediate Buffer Reuse

The memory allocation pass in LIFT traverses the AST in the top-down order, increas-

ing buffer size multipliers with each level of loop nesting. Three buffer size multipliers

are used, one for each of the three memories of the GPU. When a UF is encountered,

the size of its result buffer is calculated as the size of a single result times the accumu-

lated multiplier corresponding to the buffer AS. While the size of the output buffers

must consider the total number of results produced, the intermediate buffers do not

have to store all the results ever produced. This work extends the pass to calculate

the intermediate buffer size based strictly on the number of threads and work groups

sharing the intermediate buffer.

Specifically, the following approach is used to establish whether to propagate the

accumulated multipliers onto function arguments:

• If the function is not concrete – i.e., it contains no UFs and thus doesn’t write to

memory – propagate the multipliers onto the arguments since they might allocate

an output buffer.

• If the function is concrete:

– Propagate the global memory multiplier unconditionally since global mem-

ory is shared on all levels of parallelism, thus extra memory needs to be

allocated for sequential iterations, threads and work groups.

– Propagate the local memory multiplier if there exists an outermapLcl. In

such a case, the function is executed in parallel by local threads; thus all

intermediate local buffers need to be large enough to fit the intermediate

outputs of all threads.

– Do not propagate the private memory multiplier since registers are not

accessible in parallel. An intermediate private buffer can always be reused

across sequential and parallel loop iterations.

Effectively, this method helps the compiler detect cases when only a part of the

allocated buffer is ever used. Not propagating multipliers implies starting multipliers

accumulation from scratch at the current stage of AST traversal. Accumulating fewer

multipliers leads to a smaller allocation. Since the unallocated memory was never

used, no out-of-bounds accesses are produced.

4.5. Evaluation 81

The intermediate buffer size optimisation is especially useful for convolution on

mobile GPUs. Since sliding windows are too large to be processed sequentially, win-

dow reduction needs to be split into at least a two-level reduction tree. Thus, an inter-

mediate buffer is required; the small memory size of a mobile GPU calls for extra care

when allocating memory.

4.5 Evaluation

This section explores the performance of the automatically generated direct convolu-

tion in LIFT. A comparison is given against the best handwritten library for the ARM

Mali GPU: the ARM Compute Library [Arm21]. The evaluation uses the version of

the LIFT compiler which is extended to include the contributions of this chapter.

While the initial state of the compiler prior to this work could provide an additional

evaluation possibility, it is not provided in this chapter for two reasons. Firstly, the type

system of LIFT has been extended with more powerful arithmetic simplification pat-

terns to support the complex convolution expressions discussed in Section 4.2.4. While

the new simplification patterns do not affect the performance of generated code, they

are required to validate the semantics of the provided LIFT expression and generate

correct kernels. Secondly, this chapter presents the first efforts in the integration of

auto-tuning into the compiler itself. The prior approaches depend on the off-the-shelf

tuners such as ATF [Ras18] and OpenTuner [Ans14], and do not leverage domain

knowledge or program semantics. The ARM Compute Library provides a more chal-

lenging baseline since its tuning is driven by human expert knowledge.

4.5.1 Experimental Methodology

Code generation For each candidate low-level convolution lambda, the LIFT com-

piler is used to generate a GPU-accelerated program including C++ host code and

OpenCL kernels. The host code sets up the device, compiles the GPU code, allocates

buffers on the host (Central Processing Unit (CPU)) and the device (GPU), and sched-

ules data transfers and kernel execution; it also measures execution time per kernel.

Three OpenCL kernels are used to pad the input in global memory, perform convolu-

tion and crop the outputs, respectively. For each layer configuration, 1000 randomly

chosen implementations are generated that satisfy all the constraints. The median run-

time of 3 runs of each implementation is recorded.

82 Chapter 4. Functional IR for Auto-Tuning

Table 4.3: All unique convolutional layer configurations of VGG-16 and the runtime [ms]

evaluated for the ARM Compute Library (Direct and GEMM) and the LIFT-generated

code for the HiKey 970 (Kirin 970 processor).

Layer Input Conv ARM ARM Lift
Direct GEMM

0 3x224x224 64x3x3 38.61 2.98 9.09

2 64x224x224 64x3x3 852.03 80.14 77.08

5 64x112x112 128x3x3 426.22 37.94 40.65

7 128x112x112 128x3x3 906.66 88.09 69.60

10 128x56x56 256x3x3 452.48 23.73 58.90

12 14 256x56x56 256x3x3 975.69 60.45 84.75

17 256x28x28 512x3x3 546.63 22.30 46.07

19 21 512x28x28 512x3x3 1201.93 58.78 94.83

24 26 28 512x14x14 512x3x3 311.04 17.13 19.8

As a baseline to evaluate the performance of LIFT-generated code, the ARM Com-

pute Library (v19.02) with the Graph API is used, implementing the same layers and

running these on the GPU by indicating cl as the target from the API. All ARM Com-

pute Library results are produced using ARM’s built-in auto-tuner. The median run-

time of 100 runs of each implementation is recorded.

Benchmarks To evaluate the code generated, all nine unique layer configurations

of the VGG-16 model [Sim14] are used. This network is well-studied performance

in literature and has higher resource requirements than others such as ResNet and

GoogleNet [Che15]. Table 4.3 presents the layer configurations. All results are vali-

dated by using a fixed random input and comparing the output with that of PyTorch.

Platform This work targets the ARM Mali-G72 (12 cores) mobile GPU using the

HiSilicon Kirin 970 SoC running Debian GNU/Linux 9.8. The highest frequency

(767MHz) is used.

GPU Execution Time Measurement For LIFT results, GPU execution time is mea-

sured using the cl_event associated with the kernel launches. For the ARM Compute

Library, GPU execution time is measured by intercepting all OpenCL calls using a

4.5. Evaluation 83

L0 L2 L5 L7 L10 L12, L14 L17 L19, L21 L24, L26,
L28

1

10

100

1000

O
ut

pu
tt

hr
ou

gh
pu

t,
M

B
yt

e
pe

r
se

c

AVG

72

7

105

L0 L2 L5 L7 L10 L12, L14 L17 L19, L21 L24, L26,
L28

1

10

100

M
em

or
y

co
ns

um
pt

io
n,

M
by

te

AVG

10 9

36

VGG layer

Lift ARM-C Direct ARM-C GEMM

Lift Direct GEMM

Figure 4.4: Throughput and memory consumption comparison of LIFT-generated ker-

nels versus the direct and GEMM-based convolution methods on VGG-16.

custom profiler, which is an OpenCL wrapper library. The library automatically grabs

the cl_event associated with each OpenCL kernel launch or creates one on the fly if

required. This is done in a fully transparent way and does not influence the application

being profiled. This allows us to reuse the exact same methodology for measuring ex-

ecution time for the LIFT generated GPU code and the ARM Compute Library. The

numbers reported are the sum of all the GPU kernels involved in the operations of a

convolutional layer, including the time to pad the input and crop the outputs.

4.5.2 Comparison with ARM Compute Library

Table 4.3 shows the execution times of the LIFT-generated OpenCL kernels and the

ARM Compute Library direct convolution and GEMM implementation. Both these

versions have been auto-tuned using the tools provided by the ARM Compute Library.

As evident from the results, the LIFT-generated code is always faster than the ARM

Compute Library direct convolution and more space-efficient than its GEMM method.

Furthermore, in some cases, it is actually on par or better than the highly tuned GEMM

implementation.

Figure 4.4 shows the performance of the LIFT generated code expressed as through-

put – the amount of useful outputs generated per second – compared to that of direct

and GEMM-based convolution from the ARM Compute Library. For every layer, LIFT

is faster than the ARM Compute Library direct convolution and is 10× faster on aver-

84 Chapter 4. Functional IR for Auto-Tuning

20 25 30 35 40 45

Memory consumption [MBytes]

75

100

125

150

175

200

225

To
ta

lr
un

ti
m

e
[m

s]

Figure 4.5: The Pareto frontier of time and space efficiency of the search space ex-

plored for layer 2 of VGG-16.

age. While LIFT kernels achieve only 0.7× the throughput of the GEMM-based im-

plementation, the memory consumption is 3.6× less and is close to that of the vanilla

direct convolution. This demonstrates that an automatic code generation based on LIFT

outperforms a human expert.

4.5.3 Multi-objective Optimisation

Depending on the application, priorities in neural network inference optimisation might

shift. In a resource-bound system such as a mobile GPU that is shared among multiple

tasks, a low memory footprint is required; for time-critical tasks, throughput or latency

are to be prioritised. Figure 4.5 demonstrates how search space exploration allows for

multi-objective optimisation to cater for various budgets: advancing the Pareto frontier

results in a set of implementation candidates to choose from statically or at runtime for

specific time and space requirements. In the case of VGG layer 2, the compiler might

prioritise space efficiency by using 25 MBytes to compute results in 100 ms; when the

memory budget is bigger, the compiler can prefer the 77 ms kernel that uses 31 Mbytes

of space.

Populating a sizeable Pareto set is made possible thanks to the exploration of the

tuning parameter search space, performed in a safe way thanks to constraint inference.

Compared to libraries that depend on sets of handwritten kernels, a compiler can adapt

to finer differences in the workload and target hardware.

4.5. Evaluation 85

Table 4.4: Best parameters found for layer 7 of VGG-16.

Parameter Value

Input tile size 5×5

Number of kernels per work group 4

Number of windows per thread 3

Sequentially processed input elements 144

Optimisational padding size 11

Vector size 4

Unrolling No

Coalescing Yes

4.5.4 Analysis of the Best Point

This section analyses one of the best points found using the 7th layer of VGG as an

example. Table 4.4 shows the best tuning parameters found together with the thread

local sizes for the GPU kernel responsible for performing a partial convolution. These

parameters show that a work group processes a tile which can fit 9 sliding windows. 4

out of 128 kernels are processed by a work group, enabling reuse of the input data mul-

tiple times, without adding too much register pressure; 3 out of 9 sliding windows are

processed by each thread, enabling reuse of the weight data. The amount of padding is

also quite minimal, which avoids unnecessary work. This implementation is vectorised

which is good for memory loads on the Mali-G72 architecture.

The code produced by the LIFT compiler from Listing 4.2 for this configuration

is shown in Listing 4.6 (the code has been slightly adapted for readability). Line 3

allocates the local buffer used to store the intermediate results between the two stages

of reduction. Lines 4 to 6 deal with initialising variables related to threads and work

group management. Line 7 initialises the accumulators stored in private memory (reg-

isters). One accumulator per kernel and per sliding window is allocated. Line 12 is

the sequential loop which reduces each chunk; the loop performs 36 iterations since

there are 144 elements in each window chunk as per Table 4.4, and vectorised opera-

tions process 4 elements at once. This loop first performs several vector loads of input

elements from the sliding windows, as well as weight elements from convolutional

kernels; this enables data re-usage across the 4 kernels and 3 sliding windows. The

86 Chapter 4. Functional IR for Auto-Tuning

kernels are then convolved with the input data element-wise on lines 23 to 31. After

the loop, the accumulator variables holding the partial results of the convolution are

written out to local memory. Finally, the intermediate results are reduced in the second

stage of the convolution on lines 44 to 46 and written out to global memory on line 47.

4.6 Summary

Compared to handwritten convolution implementations and code generators relying on

imperative IRs, a functional IR presents several advantages for performance optimisa-

tion. Expressing sophisticated algorithms such as convolution is made safer by a strong

type system: semantics-breaking code changes are caught early. The expressivity of

a functional IR helps capture and propagate data dimension changes in array types.

Expressive types and a view system can be leveraged to generate tuning constraints

automatically thus decoupling tuning from structural optimisations such as tiling, coa-

lescing and vectorisation.

Memory allocation is aided by the increased level of abstraction: in the absence of

pointer arithmetic and aliasing, buffer sizes are inferred solely from the composition

of language primitives applied to the data. Each dimension of an intermediate array

is well-characterised by the functional iterators such as map and reduce with known

interval bounds, strides and parallel mappings.

This project’s contribution to barrier insertion described in Section 5.4 shows that a

declarative IR such as LIFT facilitates correct and efficient synchronisation through the

lack of explicit control flow. Determining sufficient, necessary and reachable barrier

placements is valuable for direct convolution, where reduction needs to be parallelised

in two stages with synchronisation in between.

This chapter has shown how to achieve high-performance direct convolution on a

GPU. This approach leads to a 10× speedup and 3.6× memory saving over the tuned

ARM Compute Library implementations. However, these results are limited by the

heuristic design decisions made during the manual development of the low-level LIFT

expression. Decoupling of tuning from structural optimisations can be leveraged by

automating the rewriting process to explore a wider design space. The next chapter

discusses an automatic parallelisation method, wherein rewriting the expression af-

fects the tuning space. Since tuning constraint generation is parallelisation-agnostic,

a custom tuning space can be explored automatically for each candidate parallel map-

ping.

4.6. Summary 87

1 void conv(const global float* restrict kernels, const global float* restrict input,

2 global float* out) {

3 local float local_buf[288];

4 int wg_id_0 = get_group_id(0); int wg_id_1 = get_group_id(1);

5 {

6 int l_id_0 = get_local_id(0); int l_id_1 = get_local_id(1);

7 private float acc_0 = 0.0f; private float acc_1 = 0.0f; ...; private float acc_11 = 0.0f;

8 private float4 inputEl0; private float4 inputEl1; private float4 inputEl2;

9 private float4 weightEl0; private float4 weightEl1;

10 private float4 weightEl2; private float4 weightEl3;

11

12 for (int i = 0; i < 36; i+) { // start reduce_seq

13 inputEl0 = vload4((0 + f(i, l_id_0, l_id_1, wg_id_1), input + g(i, l_id_0));

14 inputEl1 = vload4((32 + f(i, l_id_0, l_id_1, wg_id_1), input + g(i, l_id_0));

15 inputEl2 = vload4((64 + f(i, l_id_0, l_id_1, wg_id_1), input + g(i, l_id_0));

16

17 weightEl0 = vload4(0 + h(i, l_id_0, wg_id_0), kernels);

18 weightEl1 = vload4(288 + h(i, l_id_0, wg_id_0), kernels);

19 weightEl2 = vload4(576 + h(i, l_id_0, wg_id_0), kernels);

20 weightEl3 = vload4(864 + h(i, l_id_0, wg_id_0), kernels);

21

22 // start map_seq_unrolled

23 acc_0 = dotAndSumUp(acc_0, inputEl0, weightEl0);

24 acc_1 = dotAndSumUp(acc_1, inputEl0, weightEl1);

25 acc_2 = dotAndSumUp(acc_2, inputEl0, weightEl2);

26 acc_3 = dotAndSumUp(acc_3, inputEl0, weightEl3);

27 ...;

28 acc_8 = dotAndSumUp(acc_8, inputEl2, weightEl0);

29 acc_9 = dotAndSumUp(acc_9, inputEl2, weightEl1);

30 acc_10 = dotAndSumUp(acc_10, inputEl2, weightEl2);

31 acc_11 = dotAndSumUp(acc_11, inputEl2, weightEl3);

32 // end map_seq_unrolled

33 } // end reduce_seq

34

35 local_buf[0 + l_id_0 + 24*l_id_1] = acc_0;

36 local_buf[72 + l_id_0 + 24*l_id_1] = acc_1;

37 ...;

38 local_buf[232 + l_id_0 + 24*l_id_1] = acc_11;

39 }

40 barrier(CLK_LOCAL_MEM_FENCE);

41 acc_0 = 0;

42 for (int l_id_1 = get_local_id(1); l_id_1 < 4; l_id_1 += get_local_size(1)) {

43 for (int l_id_0 = get_local_id(0); l_id_0 < 9; l_id_0 += get_local_size(0)) {

44 for (int i = 0; i < 8; i++) {

45 acc_0 = acc_0 + local_buf[i + 8*l_id_0 + 72*l_id_1];

46 }

47 out[o(l_id_0, l_id_1, wg_id_0, wg_id_1)] = acc_0;

48 }}}

49 float4 dotAndSumUp(float acc, float4 l, float4 r){ return acc + dot(l, r); }

Listing 4.6: Best generated convolution implementation for VGG layer 7. Functions f

and g on lines 13 to 15, h on lines 17 to 20, and o on line 47 abstract array index

expressions for brevity. The indices are functions of loop counters, generated by LIFT

based on view transformations and parallel mappings.

Chapter 5

Parallelism Mapping Through

Constraint Satisfaction

This chapter tackles the automatic parallelisation of programs for a GPU. The func-

tional IR of LIFT is leveraged in two ways. Firstly, the implicit parallelism of the

input program is exposed via the map pattern. Based on the positions of map instances

in the given expression, arithmetic constraints are generated for all loops. The con-

straints capture the programming model of a target platform and codify valid ways of

parallelising each loop.

Secondly, a synchronisation barrier insertion method is proposed, which deter-

mines sufficient, reachable and necessary placements of OpenCL barriers. This tech-

nique replaces the pattern-matching barrier elimination method described in Section

2.3.2.4 for a more comprehensive approach. The control flow of the program is rep-

resented using a Memory Access Graph (MAG) constructed from the functional AST.

MAG is used to detect data dependencies between accesses and identify barrier place-

ments to ensure correct access ordering.

5.1 Introduction

Parallelisation presents a unique challenge in automatic code generators. There are

many optimisations that need to be considered (e.g., tiling, coalescing, prefetching),

and many ways to map data (e.g., shared memory) and computation (e.g., work groups,

threads), leading to a large implementation space. Different approaches have been

proposed to finding optimal candidates. TVM [Che18a] relies on the user to specify

Halide schedules. The Ansor [Zhe20a] project provides a TVM auto-scheduler that ex-

89

90 Chapter 5. Parallelism Mapping Through Constraint Satisfaction

plores the search space of parallel templates. However, the scheduler does not prevent

generation of invalid parallel mappings thus diminishing search efficiency.

Polyhedral compilers [Zer19; Vas18; Bag19] automate exposing parallelism, but

often rely on heuristic scheduling combined with an internal performance model [Cyp18;

Zer19] to find an optimal schedule. Accelerate [McD13] and Futhark [Hen17], two

functional approaches, rely on hard-coded heuristics to choose a parallelisation strat-

egy.

LIFT uses a different approach where optimisation choices are expressed via rewrite

rules and a search of the space is performed via sampling [Ste16]. To tackle the large

search space, LIFT relies on a multi-stage approach where algorithmic optimisations

such as tiling are first explored using rewriting. This is followed by hardware-specific

optimisations such as using shared memory and mapping parallelism using the same

rewriting system.

While the algorithmic exploration phase results in transformed programs that are

correct by construction, extra effort is required for the latter phase. Exploiting shared

memory, mapping parallelism and ensuring correct synchronisation is a delicate bal-

ancing act, and is hard to encode in a rewrite system. Parallelisation involves side-

effects that are hard to account for with the fine-grained rewrite rules of LIFT. Most

LIFT papers shy away from this problem and, like many, the current LIFT compiler re-

lies on hard-coded heuristics combined with ad-hoc mechanisms to guide this process.

Although this practical approach produces high-performance code, it is far from being

an ideal state of affairs.

This chapter describes a new approach to mapping parallelism in the context of the

data-parallel functional LIFT IR. It reformulates parallelisation mapping as a constraint

satisfaction problem encoding most of the restrictions of the programming model.

Crucially, rewrite rules are still used to perform the exploration of the space, but the

rewrites producing invalid mappings of parallelism can be avoided. By automatically

generating parallelisation constraints, the compiler prunes away invalid implementa-

tions from the search space. While the invalid mappings can instead be discovered

during subsequent compilation using static AST analysis, the constraint-based method

detects invalid mappings earlier, avoiding wasted compilation effort.

To evaluate this new approach, the VGG-16 CNN [Sim14] is used as a use-case on a

mobile GPU, with convolution as the focus. Convolution implementations require high

levels of loop nesting, especially after tiling and thus present an additional challenge

to parallelise. Chapter 4 has shown how convolution is expressed and optimised in

5.2. Overview and Motivation 91

Low-level
lambda

Parametric
Mid-level

lambda

Low-level
lambda

Concrete
High-level

lambda
CNN

GPU kernel

Algorithmic optimisations

HW-specific optimisations

Tiling
Data reuse
Reduction tree

Heterogeneous memory exploitation
Memory access pattern optimisation

Chapter 6

Parallelism mapping using constraints

Chapter 5

Constraints Implementations

Solver

Tuning
Tuning constraint inference
Tiling tuning
Parallelisation tuning
Padding tuning

Chapter 4

Code Generation

Chapters 4,5

Figure 5.1: The entire optimisation flow in LIFT.

LIFT. In contrast to prior work, parallelism mapping is performed automatically using

constraints.

The experimental results collected on ARM Mali GPU show that this new constraint-

based approach outperforms the handwritten ARM Compute Library [Arm21] direct

convolution kernels by 12× and is on par with its GEMM method while using 3.6×
less memory. It also matches the performance of the state-of-the-art TVM [Che18a]

code generator while using 2.7× less memory, which is important in the context of

mobile GPUs.

The main contributions of this chapter are:

• Parallelisation constraint generation capturing scheduling restrictions specific to

individual loops;

• Memory Access Graph-based approach to synchronisation barrier insertion in a

functional IR;

• Automatic parallelisation of VGG-16 on ARM Mali GPU, achieving perfor-

mance on par with TVM and memory savings of more than 2×.

The rest of this chapter is organised as follows. The next section provides motiva-

tion, introduces the use case-input program and contextualises the parallelism mapping

approach within the entire optimisation flow of LIFT. Section 5.3 presents the core

contribution of mapping parallelism in a functional IR with constraints. Section 5.4

describes the novel method of inserting synchronisation barriers in a functional IR.

Section 5.5 evaluates the proposed approach and Section 5.6 concludes.

5.2 Overview and Motivation

Figure 5.1 presents the LIFT optimisation flow. Starting from a high-level expression,

the input program is first transformed at the algorithm level by applying optimisations

92 Chapter 5. Parallelism Mapping Through Constraint Satisfaction

1 def conv(inputData : [[[f loat]inChs]inW]inH,

2 kernelsWeights : [[[[f loat]inChs]kerW]kerH]outChs,

3 padSize : (int,int,int,int),

4 kernelStride : (int,int)) : [[[f loat]outChs]outW]outH =

5 toHost o oclKernel((slideWindows’, kernelsWeights’) ⇒
6 mapND2(slideWin: [T](inChs ∗ kerW ∗ kerH) ⇒
7 map(singleK: [T](inChs ∗ kerW ∗ kerH) ⇒
8 reduce(0, +) o map(*) << zip(slideWin, singleK)

9) << kernelsWeights’

10) << slideWindows’

11) << (mapND2(joinND2) o

12 slideND2(kerH, kerW, kernelStride._1, kernelStride._2) o

13 padND2(padSize, value = 0) o

14 toGPU << inputData,

15 map(joinND2) o toGPU << kernelsWeights)

Listing 5.1: High-level LIFT expression of convolution. This expression is identical to

the one in Listing 4.1.

such as tiling. Then, hardware-specific optimisations come into play such as optimis-

ing memory access patterns or exploiting shared memory and a mid-level lambda is

produced. Chapter 6 discusses how this stage is performed automatically in LIFT.

The resulting mid-level lambda expresses several structural optimisations and presents

multiple opportunities for parallelisation, which are exploited in the second stage.

In contrast to prior LIFT work [Hag18], this chapter separates parallelism mapping

into its own stage, which produces a low-level parametric parallelised lambda. In the

final stage, the lambda is auto-tuned, using the approach presented in Chapter 4. This

results in a low-level expression, which is vectorised and passed to the LIFT OpenCL

code generator [Ste17].

5.2.1 The Input Program

The input program presented as a use case in this chapter is the high-level direct convo-

lution expression shown in Listing 4.1 and repeated in Listing 5.1. Since this chapter

focuses on modelling the parallelisation restrictions, the problem of navigating the

search space of other optimisations is left for Chapter 6. The set of rewrite rules is

assumed to be chosen heuristically to optimise the input program, short of mapping

5.2. Overview and Motivation 93

parallelism, which is the focus of this chapter. The optimisations applied are sum-

marised below.

• Tiling input image and weights multiple times allows exploiting data locality at

multiple levels;

• Data is reused by prefetching many input tiles and kernels before entering the

loops on lines 6 and 7;

• Memory hierarchy is exploited by storing the results of prefetched data in shared

or private memory and by accumulating in shared or private memory when re-

ducing;

• Memory access patterns are optimised by inserting transposition before and after

prefetching as well as across reduction trees;

• Weight kernel partitioning is performed to increase locality and, sometimes, im-

prove access patterns;

• Vectorisation is applied exhaustively to 1D maps with consecutive memory ac-

cesses. To establish whether accesses are consecutive, LIFT checks the differ-

ences between index expressions at iterations i, i+1, .., i+(vectorLen−1).

Applying the optimisations listed above, the rewriting process creates over 200 par-

allelisable loops (in the form ofmaps), allowing to match the complex thread hierarchy

of a GPU. The next sections discuss how the exposed parallelism is automatically ex-

ploited and mapped.

5.2.2 Challenge of Mapping Parallelism

LIFT exposes parallelism opportunity through the use of the map IR primitive which

corresponds to a loop. During rewriting, themapprimitive can be replaced by a parallel

loop implementation, exploiting different levels of parallelism in the architecture (e.g.,

work groups, local threads, vectorisation) or turned into a sequential implementation.

Herein lies the challenge of the search space explosion: treating each loop as an in-

dependent parallelisation opportunity results in a large number of invalid mappings of

parallelism.

Consider the code in Listing 5.2 that must be mapped onto the OpenCL parallelism

hierarchy. As seen in Section 2.2.2, in OpenCL parallelism exists at the global level

94 Chapter 5. Parallelism Mapping Through Constraint Satisfaction

1 for i in 1 to I do // Loop A

2 for j in 1 to J do // Loop B

3 for k in 1 to K do // Loop C

4 local buf[j][k] = f(input[i][j][k]);

5 for k in 1 to K do // Loop D

6 for j in 1 to J do // Loop E

7 output[i][j][k] = g(local buf[j][k]);

Listing 5.2: Example parallelisable expression

(G0,G1), or in a combination of work group levels (W0,W1) and local levels (L0,L1).

In Listing 5.2, f is applied on a global input, the results are stored in a local buffer,

which is then read to produce a global result using g. Listing 5.2 contains five loops that

can be mapped in numerous ways. Table 5.1 provides six (non-exhaustive) possible

mappings.

Naive mapping M1 parallelises the outer loop across global threads. Although

valid, this might lead to a lot of sequential work or perhaps little parallelism depending

on the loop iterations count. Since the iteration number could be a tuning parameter

(e.g., dependent on tile size) this could be an interesting design point nonetheless, as

certain tuning values could lead to good performance.

Mapping M2 parallelises loops A, B and D across all global OpenCL threads in

two dimensions. However, because of a data dependency, a global barrier is required

between lines 4 and 5. Since OpenCL does not support global synchronisation, this

mapping is invalid.

Mapping M3 produces out-of-scope reads since local data cannot be shared be-

tween work groups.

Mapping M4 schedules work groups across the outer loop A, and the compiler

can insert a local synchronisation barrier between loops B and D. However, the barrier

could impose a performance penalty.

Mapping M5 vectorises loop E. However, since vectorised loads require contigu-

ous data in memory and the threads are accessing non-contiguous elements in line 7,

such vectorisation is invalid.

Mapping M6 is valid and ensures that each thread access only the results it pro-

duced itself, thus eliminating the inter-thread data dependency and the need for the

barrier. Vectorisation is applied on the contiguous access in line 4. This mapping

might lead to good performance.

5.3. Parallelisation Constraint Generation 95

Table 5.1: Example parallel mappings for Listing 5.2. Gn, Wn and Ln stand for global,

work group and local parallelisations respectively in the OpenCL dimension n. S stands

for sequential and V – for vectorised.

Loop parallelisation
Parallel mapping assessment

A B C D E

M1) G0 S S S S Under-saturated cores

M2) G1 G0 S G0 S Invalid: cannot synchronise

M3) S W0 L0 W0 L0 Invalid: out-of-scope reads

M4) W0 L0 S L0 S Synchronisation overhead

M5) W0 L0 S L0 V Invalid: unvectorisable

M6) W0 L0 V S L0 Might be optimal

This example demonstrates that naive parallelisation strategies can produce invalid

code. Manual scheduling of kernels with hundreds of loops – such as convolution –

is costly and poorly generalisable. Furthermore, although invalid kernels could be de-

tected during code generation, early detection of invalid parallel mappings is desired to

avoid the overhead of tuning invalid kernels. This chapter tackles the problem by mod-

elling parallelisation restrictions in LIFT using constraints and finding valid mappings

using a solver.

5.3 Parallelisation Constraint Generation

State-of-the-art heuristic parallelisation methods focus on defining the prospective par-

allelising strategies. This approach falls short when presented with new parallel ar-

chitectures and exotic applications. This section discusses an alternative approach of

capturing the restrictions of the target. Invalid parallel mappings can be avoided by

automatically generating constraints based on a given AST. Valid parallelisations are

free of data races, respect the memory scoping rules and the parallelism hierarchy.

The constraints discussed here encode parallelisation restrictions present in many

programming models such as OpenCL, CUDA and OpenMP. OpenCL provides an

interesting shared-memory execution model as a use case, but the methodology is not

restricted to this model.

The parallelism mapping stage begins by traversing the given expression in search

96 Chapter 5. Parallelism Mapping Through Constraint Satisfaction

Table 5.2: Encoding of map transformation choices

Code value Map transformation

0 mapSeq

1 Fused with the outermap

10, 11, 12 mapLcl in dimension 0, 1 or 2 respectively

20, 21, 22 mapWrg in dimension 0, 1 or 2 respectively

30, 31, 32 mapGlb in dimension 0, 1 or 2 respectively

of maps, which are used by LIFT IR to express parallelisation opportunities. Each map

is associated with a new arithmetic parameter representing the choice of map schedul-

ing. Then, the search space is restricted with a set of constraints on the new parameters,

built using expression types, views, memory allocation, AST structure and target hard-

ware limitations. Any constraint solver library that supports all predicates described in

Section 5.3.2 can be used to generate a restricted search space of implementations to

be traversed using established search techniques.

5.3.1 Map Scheduling Choices

Sequential loops are created by replacingmapwithmapSeq. They create vectorisation

opportunities and extend the lifetime of a thread.

Parallel loops distribute work across all threads (mapGlb), work groups (mapWrg)

or threads within a work group (mapLcl). For each of these parallelisation domains,

one out of three OpenCL dimensions is chosen. The dimension choice is explored to

achieve memory coalescing since threads within a warp are in dimension 0.

Map fusion can be applied on chains of perfectly nested maps. parallelising fused

maps allows distributing more work across threads. Fusion is achieved by replacing

map(map(f)) with (split(..) o map(f) o join).

The map transformation parameters are defined on an integer range representing

scheduling choices, enabling the use of well-optimised integer constraint solvers. Ta-

ble 5.2 provides the parameter encoding scheme. The encoding scheme is chosen such

that constraint predicates can be defined concisely. As we will see later, this encoding

allows distinguishing between levels of parallelism using division by 10, and between

parallelisation dimensions – using modulo 10.

5.3. Parallelisation Constraint Generation 97

5.3.2 Constraint Generation

In the context of rewriting LIFT programs, a constraint is a predicate restricting the

range of values of one or more integer parameters representing design choices:

Constraint(parameters: List〈Parameter〉,
predicate: List〈Int〉 => Boolean)

Where List〈T〉 denotes a list of elements of type T, and => denotes a compiler-level

function. The emitted predicates are logical conjunctions of quantifier-free equality

and inequality constraints over nonlinear integer domain. The supported operators

express comparison (>, <,≥,≤, =, 6=), integer arithmetic (+,−, /,×, %) and logical

operators: AND (∧), OR (∨) and NOT (¬). Constraints are defined either manually to

express OpenCL and hardware limitations and heuristics, or generated automatically

to preserve program semantics.

The number of parallelisable maps and their positions in the AST are not known

in advance since rewriting is performed before scheduling, and rewrite rules can add,

relocate and eliminate maps in the program candidates. This makes it necessary to

collect contextual information from the current expression before constraints can be

generated. The contextual functions listed in Table 5.3 are used by the compiler to

identifymaps upon which constraints must be imposed.

Consider an example function f , which multiplies each element of the array X by a

scalar value y and adds the scalar z to each element of the resulting array:

f (X : [T]N , y : T, z : T) = X ∗ y+ z

The expression in Figure 5.2a is one possible implementation of f , in which multipli-

cation is double-tiled and summation is single-tiled. The corresponding map nesting

tree shown in Figure 5.2c is built from the AST shown in Figure 5.2b. The nesting tree

is used to provide the first four functions in Table 5.3. The MapNestingChain set, for

example, would contain chains (mapA, mapB) and (mapA, mapC, mapD). ConcreteMaps

is collected by checking the nested user functions; memory usage is inferred from the

toLocal andtoPrivate primitives. The three last functions return the dimensions of

parallelism for each map construct in a nesting chain.

Most contextual functions in Table 5.3 are known to the compiler during constraint

generation from just the given lambda and can be used to decide which constraints to

generate. The three last functions, however, are based on the chosen map parallelisa-

tions, and can therefore be evaluated only in the solving phase, once the solver paral-

98 Chapter 5. Parallelism Mapping Through Constraint Satisfaction

1 join o mapA(

2 mapB(_ + z) o join o

3 mapC(mapD(_ * y)) o split(s1)

4) o split(s0) << (X: [T]n)

(a) (b) (c)

Figure 5.2: An example LIFT expression (a), its AST (b) and the corresponding map

nesting tree (c). Letters A-D are unique loop identifiers used to refer to the correspond-

ing map instances later on in text. The underscore symbol in map(_ + z) denotes the

map lambda parameter. Arrows denote composition, double lines denote nesting.

lelises the relevantmaps. These functions are expressed in a way a solver can parse, i.e.,

as logical conjunctions integrated into the constraints themselves. For example, when

some constraint C must be enforced for each global dimension used among (mapA,

mapB), the production rule generating constraint C is equivalent to the following:

∀g ∈ GlbDimsUsedIn(mapA, mapB) : C(mapA, mapB)

⇐⇒∧
g ∈ {0,1,2}

C(mapA, mapB) ∨ (mapEncoding(mapA) 6= 30+g ∧

mapEncoding(mapB) 6= 30+g)

Where
∧

denotes conjunction, and mapEncoding(m) returns the encoding of m accord-

ing to Table 5.2. This means that for each parallel dimension g, either the constraint C

must hold, or the dimension g must not be used in any of the maps. Abstracting these

extra conjunctions away as stand-alone contextual functions leads to concise produc-

tion rules.

The contextual information is used to generate six types of constraints that are

satisfied only by programs that adhere to the OpenCL programming model and are

data race-free. In the absence of a formal definition of a correct OpenCL program, the

constraints discussed below attempt to capture the restrictions listed in the OpenCL

documentation [Khr22].

5.3.3 Memory Scoping Constraints

Parallel programming models often restrict memory types to specific parallel levels.

In OpenCL, private memory is accessible to a single thread, while local memory is

5.3. Parallelisation Constraint Generation 99

Table 5.3: Contextual functions for constraint generation

Contextual function Result

NestedMaps(m) Allmaps nested inmap m.

OuterMaps(m) Allmaps wrappingmap m.

MapNestingChains All map chains from the outer to the innermost

nestedmaps.

m1.perfectlyNestedIn(m2) True ifmap m1 is perfectly nested inmap m2.

ConcreteMaps Allmaps that write to memory.

m.usesPrivateMemory, True ifmap m accesses private or local memory

m.usesLocalMemory respectively.

GlbDimsUsedIn(maps), Global, work group or local dimensions

WrgDimsUsedIn(maps), respectively used inmaps.

LclDimsUsedIn(maps)

shared across threads in a work group, but not across work groups; global memory is

accessible on all levels. On a GPU, private, local and global memories can correspond

to registers, compute core SRAM blocks and DRAM respectively. Due to differing ac-

cess speeds and capacities of the three memory types, an optimal memory mapping for

a memory-bound application is heterogeneous and specific to the target platform. An

automatic parallelisation method must produce valid implementations irrespectively of

the memory mapping.

5.3.3.1 Private Memory Scoping

maps that consume or produce private memory cannot be parallelised since private

memory is restricted to a single thread. For example in Figure 5.2a, if mapD writes

the output into registers, both mapD and its consumer mapB must be executed within

the same thread, i.e., only the outer mapA can be parallelised. Thus, if parameter y of

mapD, ormapD output are in private memory,mapD cannot be transformed intomapGlb,

mapWrg ormapLcl.

A constraint must be generated formapD that allows only the mappings wheremapD

is sequential or fused with an outer map. A constraint for such maps can be generated

100 Chapter 5. Parallelism Mapping Through Constraint Satisfaction

as follows:
∀m ∈ ConcreteMaps, m.usesPrivateMemory
GEN CONSTRAINT: mapEncoding(m)/10 < 1

(5.1)

This represents a production rule defining which map or combination thereof to gen-

erate which constraint for. As per Table 5.3, ConcreteMaps is a set of all maps in the

expression that contain a function writing to memory as opposed to just transforming

views. Rule 5.1 generates the constraint if input or output memories of m are private, or

if m accesses a free private variable defined in an outer scope. mapEncoding(m)/10< 1

requires that suchmaps are not parallel.

5.3.3.2 Shared Memory Scoping

Local memory scoping requires that shared memory is only accessed by threads exe-

cuted on the same compute core. In Figure 5.2a, the multiplication output could be put

in local memory; in that case, a legal parallelisation is following:

1 join o mapWrgA(0)(

2 mapLclB(0)(toGlobal(_ + z)) o join o

3 mapLclC(0)(mapSeqD(toLocal(_ * y))) o split(s1)

4) o split(s0) << X

The following parallelisation is illegal:

1 join o mapGlbA(1)(

2 mapGlbB(0)(toGlobal(_ + z)) o join o

3 mapGlbC(0)(mapSeqD(toLocal(_ * y))) o split(s1)

4) o split(s0) << X

A constraint must be produced requiring that local memory is accessed only within

localmaps assigned to a single work group. This constraint is expressed as follows:

∀m ∈ ConcreteMaps, m.usesLocalMemory,
∀Chain ∈ MapNestingChains, m ∈ Chain,
∀w ∈ WrgDimsUsedIn(Chain)
GEN CONSTRAINT: (mapEncoding(m)/10 < 2) ∧∨

mOuter ∈ (Chain ∩ OuterMaps(m))
mapEncoding(mOuter)= 20+w

(5.2)

Where
∨

denotes inclusive disjunction, m ∈ Chain restricts the constraint to the chains

that include m, and mOuter is one of the outermaps of m. The WrgDimsUsedIn term can

5.3. Parallelisation Constraint Generation 101

only be evaluated by the constraint solver once the search begins, so the constraint is

supplemented by predicates enumerating all outermaps of m.

Rule 5.2 ensures that maps consuming or producing shared memory are local or

sequential. It also ensures that suchmaps are uniquely assigned to a single work group

by outer instances of mapWrg. In the resulting kernel, the shared memory of a work

group is accessed only by the threads of that specific work group.

5.3.4 Hierarchical Parallelism Constraints

The hierarchies of parallelism in parallel hardware present an extra challenge in schedul-

ing computation. The levels of parallelism must be mapped exhaustively, unambigu-

ously, and conforming to the hierarchy. This section focuses on three parallelism levels

of OpenCL: global, work group and local.

5.3.4.1 Duplicate Scheduling Constraint

maps that are directly or indirectly nested cannot be parallelised in the same domain

and dimension. In Figure 5.2a, mapC and mapD cannot be parallelised equally, and the

same for othermap nests. Duplicate scheduling is prevented as follows:

∀m ∈ ConcreteMaps, ∀mInner ∈ NestedMaps(m)
GEN CONSTRAINT: (mapEncoding(m)/10 < 1) ∨

(mapEncoding(m) 6= mapEncoding(mInner))

(5.3)

The disjunction term mapEncoding(m)/10 < 1 ensures that the constraint is applied to

the parallelmaps.

5.3.4.2 Local Thread Indexing Dimensionality Constraint

Dimensions used for thread indexing within a work group must match dimensions used

for work group indexing and vice versa. For example, if an expression usesmapLcl(0)

and mapLcl(1) and not mapLcl(2), it must also use mapWrg(0) and mapWrg(1), but

not mapWrg(2). It is evident from the nesting tree in Figure 5.2c that the maximum

depth of map nesting in the example expression is three; the only allowed parallelisa-

tions are therefore a mapWrg nesting a mapLcl in the same dimension, or up to three

nested instances ofmapGlb using different dimensions. This restriction is expressed as

follows:

102 Chapter 5. Parallelism Mapping Through Constraint Satisfaction

∀Chain ∈ MapNestingChains, ∀l ∈ LclDimsUsedIn(Chain)
GEN CONSTRAINT:

∨
w ∈ WrgDimsUsedIn(Chain)

w= l (5.4)

∀Chain ∈ MapNestingChains, ∀w ∈ WrgDimsUsedIn(Chain)
GEN CONSTRAINT:

∨
l ∈ LclDimsUsedIn(Chain)

l= w (5.5)

5.3.4.3 Local Thread Indexing Hierarchy Constraint

User functions must be parallelised across work groups before they can be parallelised

across work group threads. In LIFT, this means that nomapLclcan have amapWrgwith

the same dimension nested inside, and each mapLclmust be nested in a mapWrgwith

the same dimension.

In the Figure 5.2a example, this constraint permitsmapA,mapB andmapC to be made

mapWrg(0),mapLcl(0) and

mapLcl(0) respectively, but notmapLcl(0),mapWrg(0) andmapWrg(0).

This constraint is produced as follows:

∀m ∈ ConcreteMaps, ∀mInner ∈ NestedMaps(m)
GEN CONSTRAINT:

¬((mapEncoding(m)/10 = 1) ∧
(mapEncoding(mInner)/10 = 2) ∧
(mapEncoding(mInner)%10 = mapEncoding(m)%10))

(5.6)

5.3.4.4 Exhaustive Thread Indexing Constraint

All user functions must be parallelised in the same number of dimensions to leave

no ambiguity in work distribution among threads. For the two nesting chains in Fig-

ure 5.2c, this requires that if mapA and mapB are mapWrg(0) and mapLcl(0) respec-

tively, there must also be amapLcl(0) amongmapC andmapD.

∀ChainA ∈ MapNestingChains, ∀ChainB ∈ MapNestingChains,
∀l ∈ LclDimsUsedIn(ChainA)
GEN CONSTRAINT:

∨
m ∈ ChainB

mapEncoding(m)= 10+l

(5.7)

5.3. Parallelisation Constraint Generation 103

∀ChainA ∈ MapNestingChains, ∀ChainB ∈ MapNestingChains,
∀w ∈ WrgDimsUsedIn(ChainA)
GEN CONSTRAINT:

∨
m ∈ ChainB

mapEncoding(m)= 20+w

(5.8)

∀ChainA ∈ MapNestingChains, ∀ChainB ∈ MapNestingChains,
∀g ∈ GlbDimsUsedIn(ChainA)
GEN CONSTRAINT:

∨
m ∈ ChainB

mapEncoding(m)= 30+g

(5.9)

All three constraints require that if a parallel dimension of a given domain is used

in onemap nesting chain, it must also be used in all other chains.

5.3.5 Sequential Map Fusion Heuristic

Perfectly nested sequentialmaps can always be fused to reduce search space:

∀Chain ∈ MapNestingChains, ∀m1 ∈ Chain, ∀m2 ∈ Chain,
m2.perfectlyNestedIn(m1)

GEN CONSTRAINT: ¬((mapEncoding(m1)= 0) ∧
(mapEncoding(m2)= 0))

(5.10)

This forces all perfectly nested map pairs to be either fused or parallelised. Sec-

tion 5.5.5 analyses how this heuristic affects the search.

5.3.6 Synchronisability

Safe parallelisation requires that interdependent threads are synchronisable. The fol-

lowing expression is an example where this is not always the case:

1 mapLclA(1)(

2 mapLclB(0)(f) o transpose o mapLclC(0)(g)

3) << (X: [T]n)

transpose introduces an inter-thread dependency between mapLclB and mapLclC,

forcing the compiler to insert a barrier between the loops. However, depending on n

and the work group size, some threads might perform fewer iterations:

104 Chapter 5. Parallelism Mapping Through Constraint Satisfaction

1 for (int iA = get_local_id(1);

2 iA < n / get_local_size(1);

3 iA += get_local_size(1)) {..}

get_local_id(1) and get_local_size(1) are OpenCL built-in primitives that re-

turn local thread index and the work group size respectively in the dimension 1. When

n is not multiple of the work group size, threads perform differing numbers of itera-

tions. With a barrier inside the loop, some threads get blocked indefinitely.

In LIFT, the synchronisability condition is enforced through a compiler check just

before code generation. Barrier locations are determined by analysing loop bounds,

computed using tuned parameters such as tile sizes and work group dimensions. Mod-

elling synchronisability as a constraint before tuning would require estimating barrier

locations conservatively. This could prevent discovery of good program candidates, so

in this case early detection is sacrificed in favour of better search coverage. The next

section describes the compiler pass that ensures synchronisability by either determin-

ing reachable and sufficient barrier placements, or throwing an error if the expression

is not synchronisable.

5.4 Synchronisation Barrier Insertion

The usage of on-chip and off-chip shared memories often necessitates thread synchro-

nisation. In convolution, shared memory usage is required for tiled reduction due to the

large size of sliding windows, as discussed in Section 4.2.2.5. Tiled reduction poses

the problem of synchronisation between the stages of the reduction tree – an instance

of the readers-writers problem [Cou71]. The threads performing final reduction may

depend on the results produced by the partial reduction threads; conversely, the latter

may depend on the former to finish reading the shared memory region before it can be

written to again.

The interdependent memory access operations are ordered using OpenCL barriers.

Correct barrier placement requires that the barrier is reachable by all threads within a

work group, thus limiting which conditionals can be used in the if-blocks and for-loop

stopping conditions. Suspension of barrier-blocked threads can cause under-utilisation

of compute cores; hence, barriers need to be used sparingly. Correct and efficient

barrier placement satisfies the following conditions:

• Sufficiency – enough barriers must be placed to avoid data races and produce a

5.4. Synchronisation Barrier Insertion 105

GPU kernel that is semantically equivalent to the input expression.

• Reachability – barriers must be reachable by all threads in a work group for the

kernel to return.

• Necessity – barriers must be placed only where they are needed so that they are

hit the minimum number of times to avoid overheads.

Finding the minimum number of data dependencies to synchronise is an NP-complete

problem [Mid86]. Prior to this work, LIFT tackled barrier placement by detecting data

dependencies through direct pattern matching of the IR and analysis of inferred address

spaces [Hag18]. Section 2.3.2.4 provides an overview of the original approach. The

original pattern matching-based approach benefits from the functional IR by avoid-

ing the expensive analysis required for the imperative IRs; there is no need to anal-

yse pointer aliasing and arithmetic, as well as array index expressions. However, the

complexity of direct convolution expressions reveals the limitations of this method.

Analysing the IR directly requires enumerating many permutations of functional prim-

itives during pattern matching, which does not scale well to the increased complexity

of expressions such as convolution. We will see in Section 5.5.6 that in some cases,

the pattern match-based approach produces insufficient, unreachable, unnecessary and

inefficient barriers.

MAG-based Approach The proposed barrier insertion method shifts focus from lo-

calised IR patterns to memory accesses, i.e., the actual events to be synchronised.

Barriers are required between pairs of accesses that are interdependent; dependence

is determined by the positions of the accesses in the control flow and the overlap in

accessed array slices. LIFT captures both control flow positions and overlaps by repre-

senting accesses symbolically using arithmetic expressions defined on loop counters.

This results in a more comprehensive view of the problem, where the entire control

flow between the subsequent pairs of memory accesses is considered.

The proposed method uses two program representations: views and a Memory

Access Graph. Views are used to determine pairs of memory accesses that require

synchronisation; MAG is used to represent control flow paths between all memory ac-

cesses. The graph is used to find intersections between paths that require synchronisa-

tion (further referred to as critical paths); the barriers are placed in these intersections

to synchronise the maximum number of critical paths with the minimum number of

barriers.

106 Chapter 5. Parallelism Mapping Through Constraint Satisfaction

Algorithm 3: Memory Access Graph-based Barrier Insertion.
input : AST with allocated memory and built views

output: AST with the Barrier IR node or an exception if the AST is not

synchronisable

// Build MAG

1 V ←a node per each memory access in the AST

2 E ←a directed edge for each pair of subsequent accesses in V

3 foreach edge e in E do
4 if (

5
barrier is not needed on e or

e is not always reachable

6) then
7 mark e as non-synchronisable

8 M← 〈V ,E〉 // Directed unweighted graph

// Identify control flow paths that require synchronisation

9 I ←pairs of accesses requiring a barrier // Interdependent memory accesses

10 P←∅ // Control Flow paths requiring a barrier

11 foreach (a1, a2) in I do
12 p←shortest path between a1 and a2

13 if ∀edge e ∈ p : e is not synchronisable then
14 throw NotSynchronisableProgramException

15 insert p into P

// Insert barriers into the critical subpaths

16 foreach edge e in E : e is synchronisable do
17 e.weight ← the number of paths in P that include e

18 foreach path p in P do
19 e← the edge in p with the maximum weight within p;

20 resolve ties in favour of later edges in the control flow

21 place a barrier on e

22 foreach access a in V do
// Remove the barriers that are hit less often

23 remove duplicate barriers on edges starting in a

// Insert barriers into the AST

24 foreach edge e in E : e contains a barrier do
25 insert the barrier IR node into the AST after the node corresponding to e

5.4. Synchronisation Barrier Insertion 107

CONSUME_ACC

mem_acc

acc_el CONSUME_X

mem_x

x_el PRODUCE_F

mem_f

mapLcl

critical

f

critical

CONSUME_F

mem_f

g

critical

PRODUCE_G

mem_g

CONSUME_XCONSUME_ACCPRODUCE_FCONSUME_FPRODUCE_F

reduceSeq((acc, x) => g o mapLcl(dim0, (acc_el, x_el) => f(acc_el, x_el)
) << zip(acc, x))

Figure 5.3: An example LIFT expression, and a corresponding Memory Access Graph

used to determine optimal barrier placements. Blue and green squares represent mem-

ory accesses (reads and writes respectively); edges represent control flow paths be-

tween respective memory accesses. Critical paths are the control flow paths that re-

quire synchronisation between threads due to an inter-thread data dependency.

The compiler builds the graph by inferring the control flow between memory ac-

cesses from the AST. This representation allows placing the minimum amount of bar-

riers efficiently, favouring barriers in the intersections of multiple critical paths with

smaller degrees of loop nesting. The next section outlines the steps required to build

and leverage MAG for barrier placement.

5.4.1 Memory Access Graph Construction

A MAG is a directed graph where vertices represent memory accesses and edges repre-

sent control flow paths between subsequent accesses. The graph can be built as shown

on lines 1 to 8 in Algorithm 3 using the AST after memory allocation and view build-

ing. An edge between the two nodes corresponding to accesses a1 and a2 represents

a code block c with one or more OpenCL statements, none of which issue memory

accesses; a barrier placed anywhere in c provides sufficient synchronisation between

a1 and a2. In LIFT, memory is accessed only by user functions, so MAG vertices can

be produced by collecting all user functions in the AST. The edges of the MAG are

determined by function composition and application operators, as well as the control

flow primitives enclosing user functions, e.g.,map,iterate,scan andreduce.

Figure 5.3 shows an example MAG and the corresponding expression. Each vertex

is annotated with the name of the buffer being accessed: mem_acc for the reduce

accumulator, mem_x for the input buffer x, mem_f and mem_g for the output buffers of

function f and g respectively. Each vertex is also annotated with the type of access:

produce or consume.

108 Chapter 5. Parallelism Mapping Through Constraint Satisfaction

During the MAG construction stage, each edge is annotated with three bits of infor-

mation: direction, the corresponding AST node and synchronisability. Edge direction
characterises the control flow between memory accesses: the graph in Figure 5.3 con-

tains an edge from CONSUME_ACC to CONSUME_X because x_el is evaluated after acc_el

in the left-to-right evaluation of f(acc_el, x_el). The edge from PRODUCE_F to

CONSUME_ACC exists because mapLcl yields a for-loop, wherein writing the result of

f is followed by reading acc_el in the next iteration.

The AST node corresponding to an edge e is the last function call to be invoked

after the edge target memory access is performed; inserting a barrier IR node after

that call satisfies the dependency between the two accesses of the edge. For example,

in Figure 5.3, g o mapLcl(f) produces two edges: from PRODUCE_F to CONSUME_F,

and from CONSUME_F to PRODUCE_G. The former edge corresponds to the call of

mapLcl(f); the latter represents the control flow transition from reading the result

of f to producing the result of g.

Edge synchronisability defines whether a barrier could be inserted and might be

needed in the corresponding code block. An edge from some access a1 to some access

a2 targeting memories A and B correspondingly is marked as synchronisable if neither

of the following conditions hold:

• A and B are different memories. In such case, accesses a1 and a2 can be per-

formed in any order without the need for synchronisation.

• a1 and a2 are performed by user functions nested in a mapLcl with a variable

number of iterations per thread. In such case, a barrier placed between a1 and

a2 might be unreachable by some threads.

5.4.2 Critical Path Detection

Once a MAG is built, the compiler identifies control flow paths that require synchroni-

sation. This is done in two stages: first, pairs of interdependent accesses are identified

(line 9 in Algorithm 3). Second, for each pair (a1, a2) a path p is chosen such that

placing a barrier on p synchronises all control flow paths between a1 and a2. This

condition is enforced on lines 10 to 15 as follows:

• No node appears in the path more than once.

• The chosen path must have at least one node reachable by all threads equal num-

ber of times. This requirement is evaluated by checking loop exit conditions.

5.4. Synchronisation Barrier Insertion 109

• The IR supports only limited branching. Beyond loop exit conditions, LIFT only

uses branching in the inline IF expressions produced by the pad2D primitive,

which requires no synchronisation. For an IR with more sophisticated branch-

ing, the MAG-based method can be extended to mark conditional control flow

subpaths as ineligible for barrier placements to avoid unreachable barriers.

Determining whether a pair of accesses (a1, a2) is interdependent is less trivial.

Unless both a1 and a2 are reads, the compiler needs to establish whether there exists

a thread that accesses data produced by other threads. For example, in Figure 5.3, if a

thread ti executing g consumes the output of f produced by another thread t j, access

CONSUME_F is dependent on access PRODUCE_F.

Establishing interdependence of accesses a1 and a2 requires analysing the corre-

sponding array index expressions ha1(t) and ha2(t), where t is a variable containing

the index of the thread performing the accesses. The array index expression han(t) is

obtained by LIFT using the view built for the LIFT expression en performing the ac-

cess. han(t) is defined using the counters of the loops encapsulating en and takes into

account all view transformations performed by en. The View System is described in

more detail in Section 2.3.2.2.

Access dependence is defined as follows:

Definition 5.4.1 Assuming that the thread with index t performs access a1 first and

access a2 second, a2 is dependent on a1 if the range of ha2(t) is not fully included in

the range of ha1(t) for some value of t.

If a2 is dependent on a1, a2 accesses values that were produced or consumed during

the access a1 by threads other than t and thus synchronisation is required. For example,

if access a1 is a write, checking a2 range inclusion in that of a1 means answering the

following question: within access a2, does thread t access only the data it produces

itself within access a1?

The LIFT compiler checks access range inclusion by analysing the ranges of the

arithmetic expressions of ha1(t) and ha2(t). Due to the complexity of array index

expressions involved in optimised direct convolution, range analysis is costly in terms

of the overall compilation time. To avoid this overhead, LIFT performs range analysis

only if it fails to prove access independence using cheaper checks. These checks focus

on access types (read, write), views and parallel mapping.

The access type-based check is trivial: if both accesses are reads, no synchronisa-

tion is required and further checks are skipped.

110 Chapter 5. Parallelism Mapping Through Constraint Satisfaction

a,b : memory accesses,

Iteratorsa : [i0, i1, .., in],

Iteratorsb : [j0, j1, .., jn],

∀ik ∈ Iteratorsa,∀ jk ∈ Iteratorsb,

ik.min = jk.min, ik.max = jk.max,

ik.parallelDomain = jk.parallelDomain

∴ parallelMapping of a = parallelMapping of b

Definition 5.4.2: Equality definition of parallel mappings of accesses a and b. The

accesses are represented by the definitions of the loop counters used in the array index

expressions of the two accesses. Symbol ∴ means “therefore”.

Using the views of the two accesses, the compiler detects the absence of data layout

transformation. Since view trees capture the entire history of data layout transforma-

tions, the absence of the following primitives in the view tree guarantees that the data

layout was not changed: transpose, split, slide, join, pad, asVector. If the data

layout was changed, index range analysis is required to determine data dependency. If

the data layout is preserved, the data dependency might still be presented depending

on the parallel mappings of memory accesses.

The comparison of parallel mappings of two accesses is straightforward. For each

of the accesses, the compiler collects the iterator variables of maps that traverse the

array. For example, an expression such asmapSeqA(mapLclB(d)(mapSeqC(f))) pro-

duces the following list of iterators: [iA, local_index_dB, iC], where local_index_dB

is the index of the local thread in dimension d. Since each iterator variable contains

both the range information and the order of traversal (sequential and parallel), the full

list of iterators of an access captures its entire parallel mapping. The compiler con-

siders two accesses to have the same parallel mapping if they have the same number

of iterators, and corresponding iterators have the same ranges. The full definition of

parallel mapping equality for accesses is provided in Definition 5.4.2.

5.5. Evaluation 111

5.5 Evaluation

This section evaluates the proposed parallelism mapping technique and the barrier in-

sertion method. First, it looks into the performance and memory consumption of the

best parallel mappings found through uniformly random exploration of the constraint

space. It then provides the analysis of the generated constraints, compares the search

efficiency to the manual and randomised methods and analyses the sequential map fu-

sion heuristic. Finally, the barrier insertion method is qualitatively evaluated.

5.5.1 Experimental Methodology

Convolutional layers of the VGG-16 are expressed in LIFT. LIFT is compared against

TVM and the ARM Compute Library on the HiSilicon Kirin 970 SoC embedded

GPU (ARM Mali-G72 with 12 cores) using Debian GNU/Linux 9.8. GPU frequency

is fixed to 767MHz, the highest level. Each inference is performed over one im-

age, which is common for streaming applications. All three frameworks produce spe-

cialised OpenCL code to run on the GPU. The search and LIFT compilation are timed

on an Intel Xeon E5-2630v3 with 8GB RAM.

Lift Convolution is automatically parallelised by constructing a search space through

constraint generation using the Choco-solver library [Pru16] v4.10.1, which is a good

fit since it supports nonlinear integer constraints. Choco-solver is used in this work

as a replacement for the custom constraint solver implemented for the auto-tuning

experiments in Chapter 4 due the increased complexity of the parallelisation search

space compared to that of the tuning space. Through optimised constraint propagation

techniques, Choco-solver delivers faster constraint satisfaction time. Since the search

is uniformly random and the constraint DSL is solver-agnostic, the change of the solver

does not affect the search strategy and the results reported further in this section.

Values of the tuning parameters such as tile sizes and thread configuration are then

chosen heuristically to saturate compute cores and registers. The parallelised expres-

sion is vectorised wherever possible by analysing array indices. Each low-level ex-

pression is compiled into a C++ host code and a set of OpenCL kernels. The best

candidate is chosen through randomised exploration based on time and memory con-

sumption measurements.

For the run time measurements, a custom OpenCL profiler is used — a wrapper

that intercepts cl_event instances raised on the start and finish of the OpenCL kernel

112 Chapter 5. Parallelism Mapping Through Constraint Satisfaction

executions. The timings collected include the time spent on padding and depadding.

Each candidate is run 3 times and the median value is reported. In all sets of 3 runs, the

first run suffers from the warm-up overhead. In the best-performing candidates across

all VGG-16 layers, the relative standard deviation (RSD) of 3 runs is 2.66%, while the

RSD across 2 runs without the first warm-up run is 1.12%. Functional correctness is

verified by comparing the LIFT kernel outputs against those of the PyTorch-generated

solutions.

The parallel mapping search times include the penalty of evaluating the candidates

that satisfy the constraints but fail the extra ad-hoc checks. LIFT compiler memory

allocation reports are used to calculate the exact memory consumption of the generated

programs.

ARM Compute Library ARM Compute Library (v19.02) is used to produce OpenCL

implementations of VGG-16 convolutional layers, configured using the ARM Com-

pute Graph API. The implementations are tuned using the ARM Compute auto-tuner

to ensure a fair comparison. The library produces both direct and GEMM-based im-

plementations.

The performance is profiled by intercepting the OpenCL events in the same way

the LIFT kernels are profiled. Memory consumption is calculated manually based on

the stencil and GEMM algorithms. The profiler does not depend on any modifications

to the ARM Compute Library or its generated implementations and does not influence

the measured run time.

TVM TVM is chosen as the comparison code generator since it generally offers better

performance than competing frameworks such as nGraph, Glow, XLA on CPU and

GPU across variants of ResNet, VGG, MobileNet, MNASNet networks [Li20]. TVM

v0.6 is used, built with OpenCL support generated using LLVM version 4.0.0. For

a fair comparison, the Winograd strategy is disabled in the Python wrapper of TVM.

Winograd implementations incur a loss of precision and are therefore not semantically

equivalent to convolution, while LIFT preserves the semantics of the original problem.

TVM is set to use its preferred convolution method for the Mali GPU: Spatial Pack

Convolution [Zhe18], which applies im2col and GEMM on the tiled input.

The TVM auto-tuner, with the GATuner, explores 1000 candidates discarding slower

implementations that take longer than 100 ms to finish. A median of 30 trials per can-

didate is recorded. Convolutional layers are constructed using the Relay operation,

5.5. Evaluation 113

L0 L2 L5 L7 L10 L12, L14 L17 L19, L21 L24, L26
L28

0

20

40

Pe
rf

or
m

an
ce

[G
FL

O
Ps

pe
r

se
c]

Lift ARM-CL-Direct ARM-CL-GEMM TVM

AVG

25

2

30 26

ALL CONV

28

2

28
24

L0 L2 L5 L7 L10 L12, L14 L17 L19, L21 L24, L26
L28VGG layer

1

10

100

M
em

or
y

co
ns

um
pt

io
n

[M
by

te
]

Lift Direct GEMM TVM

AVG

10 9

36 27

MAX

27 25

12
8

61

Figure 5.4: Performance and memory consumption comparison of LIFT-generated di-

rect convolution implementations versus the direct and GEMM-based convolution meth-

ods in the ARM Compute Library and TVM-generated kernels on the convolutional lay-

ers of VGG-16 [Sim14].

conv2d, with all weights and input being represented in float32 format. TVM com-

piler optimisation is set to level 3.

TVM auto-tuner reports are used to collect run time measurements; memory con-

sumption is calculated based on the intercepted OpenCL memory allocation calls.

5.5.2 Results

Performance and memory consumption of the best implementations are provided in

Figure 5.4. The performance of each implementation is measured in Floating-point

operations s (FLOPs) per second. To determine the performance of each framework

on a given layer, the theoretical number of FLOPs required by the layer configuration is

divided by the time spent computing layer outputs. When calculating FLOPs per layer,

Multiply-accumulate operation is counted as two separate operations. Compared with

the pure run time, the chosen metric is normalised across layers of varying sizes.

Figure 5.4 also provides average per-layer performance and memory consumption.

Performance across all convolutional layers (ALL CONV) takes into account duplicate

layer configurations; it is calculated by dividing the total number of FLOPs of all

convolutional layers by the total run time. The end-to-end run time of VGG can be

inferred from ALL CONV since most of the time is spent computing convolution.

On average, LIFT is 17% slower than ARM Compute GEMM method while con-

suming 3.6× less memory. Across the whole VGG-16, LIFT is on par with ARM

Compute GEMM; the maximum memory consumption is 4.7× smaller. LIFT is on par

114 Chapter 5. Parallelism Mapping Through Constraint Satisfaction

Table 5.4: Breakdown of parallelisation constraints generated by the LIFT from the mid-

level convolution lambda.

Constraint # of instances

Private memory 32

Shared memory 13

Duplicate scheduling 34

Local thread indexing dimensionality 1

Local thread indexing hierarchy 34

Exhaustive thread indexing 9

with TVM on the average layer and is slightly faster across the whole VGG-16. Aver-

age and maximum memory consumption is 2.7× and 2.3× better respectively. Com-

pared to the theoretical minimum memory footprint achieved by the direct method,

LIFT requires only 1 Mbyte more on average.

5.5.3 Parallelisation Analysis

LIFT generated 123 parallelisation constraints from the mid-level lambda; the break-

down of the constraint instances is provided in Table 5.4. Of those, most constraints

were generated to prevent naive scheduling mistakes such as duplicate scheduling and

wrong thread indexing hierarchy. 32 constraints were required to enforce private mem-

ory scoping since the mid-level lambda was optimised to use the register memory as

much as possible.

Out of 81,000 generated candidates satisfying all constraints, 5% passed the extra

compiler checks; 33% were not synchronisable and 62% used too much memory. This

suggests that further effort is warranted to model these compiler checks as constraints

to accelerate the search further.

5.5.4 Exploration Efficiency

We now turn our attention to the efficiency of the exploration, i.e., the amount of

time it takes to find high-performance parallel mappings. Figure 5.5 shows the best

throughput achieved as a function of exploration time for the heuristic-based man-

ual approach [Mog20] and the automatic approaches. The constraint solver-based

approach outperforms the manual approach after just 88 seconds and reaches peak

5.5. Evaluation 115

3sec 10sec 1min 10min 98min 1d 1w 5w
Exploration duration

5

10

15

20

25

30

T
hr

ou
gh

pu
t

[G
FL

O
Ps

pe
r

se
c]

1

1 10
50

150
450

1
10

50
150

450

Manual Solver Random

Figure 5.5: Exploration efficiency of three parallelisation approaches: manual, con-

straint solver-based and random for VGG-16 layers 19 and 21. The curves are anno-

tated with the numbers of evaluated candidates; the horizontal dotted line shows the

projected best throughput.

Parallel mapping search Lift compilation OpenCL compilation
and execution

Manual Solver Random
Parallelization method

0

25

50

75

100

D
ur

at
io

n
[%

]

Figure 5.6: Breakdown of time spent in each stage of three parallelisation approaches:

manual, constraint solver-based and random for VGG-16 layers 19 and 21.

performance after 95 minutes. With the random approach, only 1 out of 49,000 gener-

ated candidates satisfies the constraints. In the 98 minutes it takes to produce 1 random

valid candidate (with poor performance), the solver-based method already finishes its

search achieving the highest throughput.

The exploration time breakdown shown in Figure 5.6 suggests that the solver-based

approach spends half the time searching for valid parallel mappings. This increases

the time it takes to generate one valid implementation at least twofold compared to the

manual approach. The solver-based approach also takes more time in the execution

phase due to having to evaluate slow implementations. However, the manual approach

requires more time and human expertise to pick a valid parallel mapping.

116 Chapter 5. Parallelism Mapping Through Constraint Satisfaction

0 50 100 150 200 250
Number of evaluated candidates

10

20

30

Ex
pe

ct
ed

th
ro

ug
hp

ut
[G

FL
O

Ps
pe

r
se

c]

Always fuse
Never fuse
Fuse randomly

Figure 5.7: Throughput expectancy per number of evaluated candidates with different

sequentialmap fusion strategies for VGG-16 convolution layers 19 and 21.

The time spent by the random approach is dominated by the search phase due to

the naive search strategy. Both the naive and the solver-based approaches avoid spend-

ing time compiling and executing invalid implementations thanks to the parallelisation

constraints. Despite that and the randomised search in both cases, the solver-based

method iteratively reduces the search space during constraint satisfaction through con-

straint propagation. Parts of the search space are discarded quickly and less time is

spent evaluating invalid candidates. The exploration time could be reduced further

by adding more constraints expressing parallelisation heuristics, synchronisability and

memory consumption restrictions, and an objective function.

5.5.5 Sequential Map Fusion

Throughput expectancy depending on search duration is shown on Figure 5.7 for three

sequentialmap fusion strategies. Expectancy after evaluating N candidates is calculated

using a data set of 250 candidates per strategy by uniformly sampling N candidates 100

times and taking a median of 100 maximum throughputs sampled.

The results indicate that always fusing sequential maps does not reduce maximum

throughput. The strategy yielded best throughput on VGG-16 layers 19 and 21 after

evaluating just 70 candidates compared to 140 for randomised map fusion. The differ-

ence might be explained by the reduction of search space.

5.5. Evaluation 117

mapSeq(mapSeq(g) o mapLcl(0)(f)) << (x: [[T]M]N)

1 for (int i = 0; i < N; i++) {

2 for (int j = get_local_id(0); j < M; j += get_local_size(0)) {

3 buf[j + i * M] = f(input[j + i * M]);

4 }

5 barrier(CLK_GLOBAL_MEM_FENCE);

6 for (int j = 0; j < M; j++) {

7 output[j + i * M] = g(buf[j + i * M]);

8 }

9 + barrier(CLK GLOBAL MEM FENCE); }

Listing 5.3: A LIFT example where the pattern matching-based method misses a re-

quired barrier on line 9.

5.5.6 Barrier Insertion

This section provides a qualitative evaluation of the proposed MAG-based barrier in-

sertion method by illustrating the limitations of the original pattern matching-based

approach that the proposed method addresses. Listings 5.3 to 5.5 provide examples

where the barriers inserted by the original method are insufficient, unreachable or un-

necessary due to missing or conservative IR patterns.

In Listing 5.3, the data dependency between the calls of f and g requires two barri-

ers: one on line 5 to ensure that all the data read by g is produced before reading, and

another on line 9 to ensure that g has consumed all data before overwriting the buffer.

The current barrier placement approach places the barrier correctly on line 5 since the

expression matches the pattern on line 6 of Algorithm 1. The method does not detect

the write-after-read dependency between the calls of g and f.

Listing 5.4 is an example of an unreachable barrier. Since in this example N is not

a multiple of the work group size in the dimension 1, threads enter the loop on line 1

a different number of times. Placing a barrier inside a loop with a variable number of

iterations causes threads that do reach the barrier to wait indefinitely. Both the current

and the proposed barrier placement methods detect non-synchronisable expressions by

checking the number of iterations of eachmapLcl containing a barrier.

118 Chapter 5. Parallelism Mapping Through Constraint Satisfaction

Listing 5.5 is an example where an unnecessary barrier is placed due to the pattern

on line 2 of Algorithm 1. Even though f and g share a buffer, the two data access

patterns are such that there is no data dependency.

In Listing 5.6, the current approach detects that the barrier is needed between f

and g, but chooses an inefficient barrier placement. The same data dependency can

be respected by placing a barrier on line 7, resulting in fewer barrier hits. Identifying

a better placement requires considering the wider context of a parallel map – e.g.,

enclosing sequential loops produced by any of multiple functional primitives – which

is non-trivial in a IR pattern matching-based approach.

5.6 Summary

As seen, the LIFT IR exposes plenty of parallelism. This chapter demonstrates how

this parallelism is exploited safely by auto-generating parallelisation constraints from

the algorithmic representation of the program. Arithmetic constraints capture a parallel

programming model such as OpenCL concisely: 10 types of constraints suffice to ex-

clude invalid parallel mappings. However, the overall number of generated constraints

– 123 instances – highlights the difficulty of mapping onto the scheduling and memory

hierarchies of a GPU.

This chapter also demonstrated a more exhaustive approach to synchronisation bar-

rier insertion. Instead of relying on enumerating functional patterns which require syn-

chronisation, the proposed method finds all memory accesses in the program, and de-

termines synchronisability based on the control flow between interdependent accesses.

Although the proposed parallelism mapping technique still depends on an ad-hoc

check of kernel synchronisability, the overall approach is still fully automated. The

barrier insertion method could be integrated into the constraint solver to detect non-

synchronisable mappings even earlier.

The results presented in this chapter are heavily dependent on algorithmic and

hardware-specific optimisations. Tiling, data reuse and cache optimisations are not

achievable through parallel mapping space exploration alone; the high-level expression

needs to be lowered to express higher degrees of loop nesting and reordered memory

accesses. The next chapter discusses how these radical structural transformations are

achieved in LIFT, bridging the gap between high-level problem specification and an

optimised hardware-specific kernel.

5.6. Summary 119

mapLcl(1)(mapLcl(0)(mapSeq(g)) o

mapSeq(mapLcl(0)(f))

) << (x: [[[T]K]M]N), where N % get_local_size(1) 6= 0

1 for (int i = get_local_id(1); i < N; i += get_local_size(1)) {

2 for (int j = get_local_id(0); j < M; j += get_local_size(0)) {

3 for (int l = 0; l < K; l++) {

4 buf[l + j * K + i * K * M] = f(input[l + j * K + i * K * M]);

5 }

6 }

7 - barrier(CLK GLOBAL MEM FENCE);

8 for (int j = 0; j < M; j++) {

9 for (int l = get_local_id(0); l < K; l += get_local_size(0)) {

10 output[l + j * K + i * K * M] = g(buf[l + j * K + i * K * M]); }}}

Listing 5.4: A LIFT example with an unreachable barrier on line 7.

mapSeq(mapLcl(0)(g)) o

mapSeq(mapLcl(0)(toLocal(f))) << (x: [[T]M]N)

1 for (int i = 0; i < N; i++) {

2 for (int j = get_local_id(0); j < M; j += get_local_size(0)) {

3 local_buf[j + i * M] = f(x[j + i * M]);

4 }

5 - barrier(CLK LOCAL MEM FENCE);

6 }

7 for (int i = 0; i < N; i++) {

8 for (int j = get_local_id(0); j < M; j += get_local_size(0)) {

9 output[j + i * M] = g(local_buf[j + i * M]); }}

Listing 5.5: A LIFT example with two loop nests, where the pattern matching-based

method inserts an unnecessary barrier.

mapLcl(0)(mapSeq(g)) o

mapSeq(mapLcl(0)(toLocal(f))) << (x: [[T]M]N)

1 for (int i = 0; i < N; i++) {

2 for (int j = get_local_id(0); j < M; j += get_local_size(0)) {

3 local_buf[j + i * M] = f(x[j + i * M]);

4 }

5 - barrier(CLK LOCAL MEM FENCE);

6 }

7 + barrier(CLK LOCAL MEM FENCE);

8 for (int i = get_local_id(0); i < N; i += get_local_size(0)) {

9 for (int j = 0; j < M; j++) {

10 output[j + i * M] = g(local_buf[j + i * M]); }}

11 barrier(CLK_LOCAL_MEM_FENCE);

Listing 5.6: A LIFT example with two loop nests with a data dependency, where the

pattern matching-based method chooses an inefficient barrier placement on line 5.

Chapter 6

Towards Guided Rewriting

This chapter tackles the problem of balancing user-driven and explorative code gen-

eration through Rewrite points. An RP is a programming abstraction used to perform

local macro-optimisations of a given expression. Annotating an expression with RPs

does not fully define the rewritten expression, since each RP exposes design choices

for exploration as parameters. RP parameters create a design space; user-defined RP

placements truncate the design space. This chapter shows that these strongly typed

pragmas encode a diverse design space without burdening the user with too many im-

plementational details.

6.1 Introduction

We have seen in the previous chapters how a functional IR is leveraged to reduce the

gap between an algorithm specification and a custom-tailored implementation. The

functional paradigm is well-suited to expose parallelism and implement low-level op-

timisation methods, with expressive type and view systems preserving the original

semantics of the problem specification. The rich algorithmic representation is lever-

aged to infer arithmetic tuning constraints and tune a low-level expression for a given

platform. A large space of valid parallel mappings is constructed automatically for a

specific AST, given a well-tiled expression.

This chapter furthers the separation of concern by raising the level of IR abstrac-

tion. A performance-portable code generator should create new parallelisation oppor-

tunities and optimise memory usage and access patterns. Previous work discusses how

dozens of fine-grained generic rewrite rules are combined to transform abstract con-

cise expressions into highly optimised low-level expressions. The rewrite rule-based

121

122 Chapter 6. Towards Guided Rewriting

approach has been shown to match and outperform state-of-the-art solutions in sev-

eral domains [Hag18; Piz19; Ste15]. Although this approach eventually finds good

implementations, it poses the problem of long exploration times.

This chapter describes the first steps towards a guided rewriting approach combin-

ing human expertise and automated exploration. This approach frees the user from en-

coding low-level optimisations by offering high-level parametric abstractions – Rewrite

points (RPs) – representing classical optimisations. The RPs are applied automatically

by the compiler to transform parts of the input LIFT program to equivalent expres-

sions. The structure of the transformed expressions is determined by the RP parame-

ters, which can be explored automatically.

The RP parameters expose high-level structural design choices. Since they can be

explored automatically, the user does not fully define the final expression. Instead, the

user guides the compiler through the design space in broad strokes, leading the search

to the subspaces with good implementations. The manual process of annotating the

LIFT program with RPs can be considered meta-programming, and RPs themselves –

optimisational blueprints.

The RP-based approach spreads the optimisational effort among the user and the

compiler engineer. The user encodes high-level optimisation heuristics by annotating

a program with RPs. The compiler engineer designs the RPs, aided by the high-level

IR of LIFT, where most RPs act on the algorithmic representation and are reusable

across applications and platforms. Since the RPs are part of the LIFT IR, they are type-

safe and have no side effects, which makes it easier for the user to apply them safely.

Incorrectly applied RPs do not pattern-match and get eliminated; the user is notified

when the application fails to help improve the rewriting process.

We will see an example where a single RP parameter captures the choice between

two different convolution algorithms. The same set of RPs is shown to optimise each

implementation differently achieving multiple levels of tiling, data reuse, heteroge-

neous memory exploitation and memory access pattern optimisation. This diversity is

enabled by giving the compiler a degree of freedom in choosing among the alternative

designs. The RP application is both optional and parametric.

The focus of this chapter is on expressivity: how can an IR encode a large de-

sign space concisely? The evaluation shows that the RP-based approach produces

high-performance implementations for two different convolution algorithms from the

same annotated high-level LIFT expression. The results indicate that future work could

leverage RPs to achieve semi-automated exploration guided by human expertise.

6.1. Introduction 123

This work follows in the footsteps of PetaBricks [Pho13], which pioneered ex-

posing alternative implementations to the compiler. Compared to the schedules and

the Halide IR in TVM [Che18a], as well as the ELEVATE strategies and the RISE

IR [Hag20b; Hag20a], the LIFT IR is used to both specify the algorithm and encode

the design space. Like Tangram codelets [Cha16; De 19], LIFT RPs may insert other

RPs into the transformed expression. This composability comes naturally because RPs

are first-class citizens of the LIFT IR. Compound RPs lead to long rewriting sequences

expressing macro-optimisations, which would otherwise take a long time to discover

through the rewrite rule-based approach.

RPs are completely decoupled from code generation since RP application is a

source-to-source translation within the same LIFT IR. By the time compilation reaches

code generation, the RP nodes are eliminated from the program. Such an approach

results in an extensible compiler, where adding support for new platforms and optimi-

sations is possible at a low cost since the code generation functionality is reused.

This chapter focuses on understanding how good design choices are encoded di-

rectly in the IR. This work shows that an RP-annotated high-level expression can ex-

press a large design space that includes high-performance direct and GEMM-based

convolution implementations without changing the original semantics of the expres-

sion. The modular design produces complex optimisations by reusing a small set

of rewrite points. Given well-chosen parameter values, the compiler automatically

rewrites the expression into the programs matching the performance of a vendor-

provided handwritten kernel library and a state-of-the-art code generator. Since the RP

mechanism is automatic, the same implementations can be found through automatic

exploration.

The main contributions of this chapter are following:

• User-guided parametric rewriting mechanism as a way of injecting loosely-defined

heuristics into the search.

• Expressing a design space through RPs that includes two convolution meth-

ods, tiling, prefetching, data reuse, memory optimisation, access coalescing and

OpenCL kernel fission.

• Extension of the tuning mechanism, in which new tuning opportunities are cre-

ated by the constraint solver through rewrite points.

124 Chapter 6. Towards Guided Rewriting

RewritePoint : (inputFun : T ⇒U, x : T)⇒U

Figure 6.1: The type signature of a rewrite point. The blue background is used hence-

forth to highlight rewrite points.

6.2 Rewrite Points

The system of rewrite rules introduced by LIFT produces very large design spaces

which are difficult to explore. Although the compiler eventually achieves non-trivial

optimisations that are well-tailored to the target platform, it needs a long time to dis-

cover common optimisations that take little effort for the user to define manually:

tiling, prefetching and coalescing, etc. This chapter suggests a compromise approach,

wherein the user guides the rewriting process by annotating the input expression with

predefined RPs, which are used by the compiler to identify the subexpressions to

rewrite. RP definitions are partially relaxed: parts of the transformed expressions are

defined by rewrite parameters that can be explored automatically by the compiler. The

resulting expression is defined both by the manual placement of the RPs, and through

the automatic exploration of the RP parameters.

RPs are first-class citizens of the LIFT IR, provided as an extensible standalone li-

brary. RPs can be considered strongly typed pragmas. From the compiler’s perspective,

an RP is an ordinary IR node whose type is fully defined by its input LIFT expression.

The code generator is agnostic of RPs since they are either replaced with the trans-

formed versions of their input functions or eliminated during rewriting. Although RP

transformations are more coarse-grained than the regular rewrite rules [Ste15], we will

later see that the RPs are also generic and reusable. They are similarly composable

since an RP can annotate the transformed expression with other RPs.

RPs are a flexible tool to calibrate the ratio of human expertise to automatic explo-

ration in the optimisation process according to the complexity of the input expression

and the target platform. The search space of the fully automated blind rewriting is

first reduced through the manual placement of RPs in the input expression. Defining

heuristic constraints on the RP parameters truncates the space further.

The next sections describe the interface of RPs and their application process car-

ried out by the compiler during rewriting. Section 6.2.4 uses convolution as a case

study and shows an example annotation of the high-level convolution expression from

Chapters 4 and 5. Section 6.2.5 defines eleven RPs that are sufficient to express both

6.2. Rewrite Points 125

1 interface RewritePoint {
2 skip: Bool; structParams: List〈V〉; tuningParams: List〈I〉
3 pattern: T ⇒U

4 def rewrite(inputFunComponents): T ⇒U

5

6 def apply(inputFun: T ⇒U): T ⇒U = {
7 if (skip) return inputFun

8 else

9 switch(inputFun) {
10 pattern:

11 return rewrite(pattern.decompose(inputFun))

12 nestedRP(nestedFun):

13 return nestedRP(apply(nestedFun))

14 otherwise:

15 return inputFun } }}

Listing 6.1: The rewrite point interface. Formatting differentiates the implementation

language of the LIFT compiler and the LIFT IR. The former is highlighted using the

yellow background and the slanted font; the latter uses the white background. Blue

colour highlights rewrite points. Bool represents the Boolean type in the compiler IR.

the optimisations implemented manually in Chapter 4, and to optimise the expression

further.

6.2.1 Definition

The type signature of a rewrite point is shown in Figure 6.1. An RP is a higher-

order identity function which applies a given function on an argument. During the RP

application, the RP is replaced with a transformed version of the input function; the

return type is preserved.

In the Object-oriented programming (OOP) terms, RewritePoint is implemented

as an interface encapsulating common functionality shared by all RPs. The classes

extending RewritePoint define specific macro-transformations and the patterns where

they are legal. An instance of the RP class extending the RewritePoint interface

represents an IR primitive.

The full RP interface is shown in Listing 6.1. From here on, two IRs are used

to define rewrite points: that of the LIFT compiler (highlighted in yellow), and the

LIFT language. The compiler IR presented in this thesis is a pseudocode based on

126 Chapter 6. Towards Guided Rewriting

the Scala programming language, which is the implementation language of the LIFT

compiler. The white background denotes LIFT expressions; the blue background is

used to highlight rewrite points.

Each class of RP extends the RewritePoint interface, overriding all members ex-

cept for apply. The apply function is invoked by the compiler during the top-down

rewriting process explained in Section 6.2.3. apply replaces the RP instance with ei-

ther the rewritten version of the input function on line 11, or the unchanged inputFun

if it doesn’t match pattern (line 15). The pattern (Line 3) is defined by each RP class

on LIFT IR primitives and types. The apply function checks whether the input func-

tion matches the pattern using the switch case on line 10. Type equality of the input

and return functions of apply on line 6 reflects the semantics-preserving property of

RPs.

Each RP class defines two types of parameters: structural and tuning. Structural

parameters affect the AST transformation performed by rewrite; tuning parameters

are used as arguments to the IR nodes in the rewritten expression. The first structural

parameter that all RPs have is skip. It defines whether the RP is applied or eliminated.

Structural parameter type V is defined on all types of the compiler IR. These are the

types the compiler uses inside the rewrite function to choose the IR nodes and their

positions in the transformed expression; compiler IR types are not part of the LIFT lan-

guage. Examples of these types in Section 6.2.5 include LIFT address spaces, vectors

of integers representing the order of transposed dimensions, and integers. The user

can impose heuristic constraints on the structural parameter values to prune the search

space.

Tuning parameters expose numerical attributes such as split size. They are injected

into the transformed expression to be explored as per Chapter 4. Tuning parameters

are restricted by the constraints inferred automatically from the AST as described in

Chapter 4. A constraint solver is used to explore both structural and tuning parameters.

Function rewrite takes a variable number of parameters collectively referred to

as inputFunComponents on line 4. These are the components of the input function

that rewrite depends on to produce a new expression; they include both inputFun

subexpressions and array sizes extracted from the types inside inputFun. Each RP

class defines its own inputFunComponents that it depends on.

The components are extracted by the compiler function decompose from inputFun

on line 11. The definition of decompose is implied here as a utility function that returns

the subexpressions and types matched by named subpatterns within pattern. We will

6.2. Rewrite Points 127

see examples of such named subpatterns in Sections 6.2.3 and 6.2.5.

To sum up, the transformation performed by the rewrite function can be defined

as rearrangement of the components of the input function according to the RP-specific

implementation of rewrite and the chosen values of structural and tuning parameters.

6.2.2 Nesting

Multiple RPs can be nested around the same input function to apply multiple different

transformations in sequence:

rewritePointA(rewritePointB(f)) 7−→ rewritePointB(f’) 7−→ f’’

RPs are nestable thanks to recursive pattern-matching on lines 12 and 13 of List-

ing 6.1; we will see on the example of convolution in Section 6.2.4 how RP nesting

and composition allow designing complex chains of optimisations. During pattern-

matching, line 12 captures directly nested rewrite points and line 13 invokes apply on

the LIFT expression at the bottom of the RP nest. The rewritten expression is wrapped

into the nested RPs again to be rewritten further as we will see in Section 6.2.3.1.

As rewriting progresses, nested RPs might become inapplicable and get eliminated

since their transformed input function might not match their patterns. To avoid this,

RPs can take control over the placement of the nested RPs. Instead of letting apply

wrap the entire rewritten expression in the nested RPs on line 13, an RP class can cap-

ture the nested RPs explicitly within its pattern on line 3. Captured nested RPs can

then be extracted using pattern.decompose on line 11 and provided to the rewrite

function. The rewrite function on line 4 can use the captured RPs to wrap the part of

the rewritten expression that is likely to match their patterns. Section 6.2.3.2 shows an

example RP class which is expected to transform inputFun significantly; the example

RP places the nested RPs around the subexpression that resembles the original pattern

more than the entire rewritten function.

6.2.3 Application

An expression with RPs is rewritten in the top-down order, in which the RPs that wrap

other RPs are applied before their nested RPs. The top-down order gives the outer

RPs control over inner RP placement in the transformed expression to maximize the

likelihood of inner RPs pattern-matching the transformed subexpression.

128 Chapter 6. Towards Guided Rewriting

Algorithm 4: Recursive top-down rewriting of all rewrite points in a LIFT

expression. yield indicates that the nested block returns a value of the expres-

sion at the end of the nested block.
1 function applyRPs(e : expression):

input : LIFT expression

output: Rewritten expression with all RPs applied

2 switch e

3 case Literal | Param do return e

4 case f << args do

5 newArgs← (foreach arg in args yield applyRPs(arg))

6 newF← (switch f

7 case rp: RewritePoint yield

8 valuesOfStructParams← solve(rp.structParams)

9 newInputFun← rp(valuesOfStructParams)

10 .apply(rp.inputFun)

11 if newInputFun == rp.inputFun then rp.inputFun

12 else

13 TypeChecker(newInputFun << newArgs)

14 assert newInputFun.type == rp.inputFun.type

15 (newInputFun.params⇒ applyRPs(newInputFun.body))

16 case fPattern: (map | reduce | ..) yield

17 fPattern.f.body = applyRPs(fPattern.f.body)

18 fPattern

19 otherwise yield f)

20 return newF << newArgs

6.2.3.1 Algorithm

Algorithm 4 outlines the recursive RP application process in pseudocode. For each

function call matched on line 4, the algorithm is invoked recursively on all function

call arguments on line 5. The function itself is rewritten on lines 6 to 19.

Function rewriting proceeds differently depending on the function. If the function

is an RP, the RP is applied on its inputFun on line 10 using the structural parameter

values picked by the constraint solver on line 8. Lines 11 to 14 ensure that the RP

either does not pattern-match the input function, or produces a new function with the

same type. Line 15 attempts to rewrite newInputFun again in case it contains nested

RPs, and produces a new function. Lines 16 to 18 recursively rewrite the functions

6.2. Rewrite Points 129

1 splitJoinND 7−→ splitJoin1D | splitJoin2D | ..
2

3 splitJoin2D extends RewritePoint {
4 structParams = List()

5 tuningParams = List(tileSize0: Int, tileSize1: Int)

6 pattern = nestedRPs(map(f))

7 def rewrite(nestedRPs, f) = {
8 return joinND2 o nestedRPs(map(map(map(f)))) o

9 splitND2(tileSize0, tileSize1) }}

Listing 6.2: Split-join rewrite point definition.

inside functional patterns such asmap andreduce.

6.2.3.2 Example

The rewriting process can be exemplified using the Split-join RP provided in List-

ing 6.2. This is an RP-based version of the Split-join rewrite rule defined in previous

work [Ste15], which replaces map(f) with join o map(map(f)) o split(s). By

virtue of splitting data and increasing the number of maps, this RP is useful for data

tiling and creating parallelisation, vectorisation and coalescing opportunities.

The dimensionality of Split-join can be varied to achieve higher degrees of tiling

and finer-grained parallelisation and coalescing. The choice can be either left to the

user, or explored within a heuristic upper limit on the number of dimensions to prevent

search space explosion. Listing 6.2 provides a 2D version as an example.

Line 6 defines the RP pattern as a map nested in zero or more nested RPs and

wrapping some function f. Lines 7 to 9 produce a transformed version, in which the

argument is tiled twice using the tuning parameters tileSize0 and tileSize1. The

original function f is wrapped in threemaps to account for the extra two dimensions.

Function f is a component of the input function; it originates from pattern on

line 6, where it is captured as a named subpattern. Listing 6.1 in Section 6.2.1 shows

that the input function decomposition takes place in the apply function of the RP in-

terface. Both f and nestedRPs are provided to splitJoinND.rewrite by decompose

as arguments.

The new placement of nestedRPs on line 8 of Listing 6.2 reduces the disruptive

effect of this RP application on pattern-matching within the nested RPs. Immediately

nested RPs are applied on the same input function, so their patterns can be expected to

130 Chapter 6. Towards Guided Rewriting

splitJoin1DA(splitJoin1DB(map(g)))

(a) Example input function.

map

map

join

join

map
g

split(tsA)

split(tsB)
split(tsA)

mapmap

map

join

g

B

g

SplitJoin1D-B SplitJoin1D-B

SplitJoin1D-A

A

1
2
3
4

6
5

(b) Top-down rewriting order.

map

map

join

g

split(tsB)

map

map

join

g

split(tsB)

map
g

SplitJoin1D-B

SplitJoin1D-A SplitJoin1D-A

B A

1
2
3
4
5

(c) Bottom-up rewriting order.

Figure 6.2: Example rewrite point application sequences of a LIFT function in (a). Dou-

ble lines denote nesting, black small arrows denote composition and blue large arrows

denote rewrite point application. In the top-down rewriting order (b), splitJoin1D-A

is expanded first, and splitJoin1D-B second. In the bottom-up rewriting order (c),

splitJoin1D-B is expanded first and prevents splitJoin1D-A from pattern-matching.

be similar. Meanwhile, the Split-join RP replaces map with a composition of joinND

and a map nest, which would prevent nested RPs expecting a map on top from pattern-

matching the result of the transformation. To avoid this, the Split-join RP overrides

the default behaviour of RewritePoint.apply: the RP places the nested RPs around

the new map nest on line 8 of Listing 6.2 instead of placing the nested RPs around the

entire transformed function on line 13 of Listing 6.1.

Figure 6.2 shows two example RP application sequences, which illustrate the ad-

vantage of top-down rewriting versus bottom-up rewriting. In the top-down order (b),

splitJoin1D-A is applied first on the function inside splitJoin1D-B. map(g) is re-

placed with join o map(map(g)) o split(ts0). splitJoin1D-B is applied next:

since it was placed around themapnest by splitJoin1D-A, the second pattern-matching

is successful and the final expression is produced with a double-tiledmap.

6.2. Rewrite Points 131

1 def conv(inputData : [[[f loat]inChs]inW]inH,

2 kernelsWeights : [[[[f loat]inChs]kerW]kerH]outChs,

3 padSize : (int,int,int,int),

4 kernelStride : (int,int)) : [[[f loat]outChs]outW]outH =

5 toHost o oclKernel((slideWindows’, kernelsWeights’) ⇒
6 mapND2(slideWin: [T](inChs ∗ kerW ∗ kerH) ⇒
7 map(singleK: [T](inChs ∗ kerW ∗ kerH) ⇒
8 reduce(0, +) o map(*) << zip(slideWin, singleK)

9) << kernelsWeights’

10) << slideWindows’

11) << (mapND2(joinND2) o

12 slideND2(kerH, kerW, kernelStride._1, kernelStride._2) o

13 padND2(padSize, value = 0) o

14 toGPU << inputData,

15 map(joinND2) o toGPU << kernelsWeights)

Listing 6.3: High-level LIFT expression of convolution. This expression is identical to

the one in Listing 4.1.

In the bottom-up order (c) splitJoin1D-B is applied first. Since splitJoin1D-B

has no control over the placement of its outer RP, splitJoin1D-A is placed around the

entire transformed expression by RewritePoint.applyRPs. With join at the top of

the transformed function, splitJoin1D-A does not pattern-match and gets eliminated,

producing only a single-tiled function.

Next, we look at a real-life use case, where eleven RP classes are combined to

define and curb design space of convolution implementations.

6.2.4 High-level Convolution, Annotated

Section 4.2.4 illustrates the complexity of the low-level LIFT implementation of convo-

lution even with the final step of the reduction omitted. While the functional paradigm

helps by abstracting the array index expressions away, LIFT’s strict type checker jus-

tifiably makes it hard to express low-level state-of-the-art performance optimisation

methods correctly. The automatic parallelisation approach discussed in Chapter 5 alle-

viates the concern for parallelisation correctness; however, abstracting away paralleli-

sation does not reduce the size of the low-level expression in Listings 4.2 and 4.3.

Listing 6.4 illustrates how RPs abstract the optimisational details further from the

132 Chapter 6. Towards Guided Rewriting

1 def conv(inputData : [[[f loat]inChs]inW]inH,

2 kernelsWeights : [[[[f loat]inChs]kerW]kerH]outChs,

3 padSize : (int,int,int,int),

4 kernelStride : (int,int)) : [[[f loat]outChs]outW]outH =

5 toHost o

6 padExtra2D(kernelFission(

7 joinSplitND(padExtra1D(kernelFission(slideWindows’ ⇒
8 kernelFission(kernelsWeights’ ⇒
9 oclKernel((slideWindows’’, kernelsWeights’’) ⇒

10 abTile(abTile(

11 tileNestedMapReduce(reduceFun = +)(

12 tileNestedMapReduce(reduceFun = +)(

13 abTile(

14 mapND2(slideWin: [T](inChs ∗ kerW ∗ kerH) ⇒
15 map(singleK: [T](inChs ∗ kerW ∗ kerH) ⇒
16 privatiseAccumulator(

17 reduce(0, +) o map(*) << zip(slideWin, singleK))

18) << kernelsWeights’’

19) << slideWindows’’)))))

20) << (slideWindows’, kernelsWeights’)

21) o map(joinND2) o toGPU << kernelsWeights

22))) o mapND2(joinND2) o

23 slideND2(kerH, kerW, kernelStride._1, kernelStride._2)

24)) o padND2(padSize, value = 0) o toGPU << inputData

Listing 6.4: High-level LIFT expression of the convolutional layer with rewrite points.

user. The listing presents an expression which is semantically equivalent to the one in

Listing 6.4. This expression has been manually annotated with RPs without changing

the high-level definition of convolution. All the added nodes are RPs expressing a

specific parametric optimisation strategy – one that automatically produces the low-

level direct convolution expression in Section 4.2.4 and GEMM-based convolution.

Each of the chosen RPs expresses one of the following:

• Optimisations beneficial to both direct and GEMM-based convolution, e.g., tiling,

accumulator privatisation and kernel fission.

• Optimisations beneficial to only one of the convolution methods, e.g., 2D padding

for direct convolution and 1D padding for GEMM-based convolution.

6.2. Rewrite Points 133

Table 6.1: RP instances in the high-level convolution expression in Listing 6.4 and their

desired effects. Padding refers to optional zero-padding of data for optimisational pur-

poses, not the padding required by the convolutional layer specification.

Line Rewrite point instance Desired application effect

6 padExtra2D Input padding before sliding to expand tile size range

6 kernelFission Input data layout optimisation before sliding

7 joinSplitND Input flattening to simplify rewriting

7 padExtra1D Input padding after sliding to expand tile size range

7 kernelFission im2col-formatted input data layout optimisation

8 kernelFission Weights data layout optimisation

10 abTile (outer) Tiling for parallelisation; loop interchange

10 abTile (inner) Tiling for cache locality

11 tileNestedMapReduce Reduction tiling for parallelisation, thread coarsening

12 tileNestedMapReduce Data reuse tuning

13 abTile Tiled prefetching for data reuse

16 privatiseAccumulator Private memory optimisation

• Expression differentiation into one of the two convolution methods: the materi-

alisation of the slided windows produces the im2col stage of the GEMM-based

method.

The RP annotations only add information to the system without changing the over-

all compilation flow. The expression is type-checked before and after RP application

to ensure the preservation of convolution semantics.

The desired effects of all RPs in Listing 6.4 are summarised in Table 6.1; we will

see complete definitions of the individual RPs in Section 6.2.5. Although the actual

effect of the RP application is ultimately determined by its parameter values and the

application of other RPs, the annotations of the high-level expression are designed to

achieve most of these effects in the same candidate. Following the top-down rewriting

order, the chosen strategy may proceed as follows.

6.2.4.1 Input Pre-Processing

The pre-processing stage opens the data layout up for exploration – array elements can

be reordered in memory before the main computation begins. Combined with tiling, an

optimal data layout improves cache locality and creates coalescing and vectorisation

134 Chapter 6. Towards Guided Rewriting

opportunities.

This stage also determines the algorithm choice: direct or GEMM-based. The main

difference between the two is the im2col operation, which materialises sliding win-

dows in memory. In the convolution expression in Listing 6.4, im2col can be achieved

by inserting an identity user function after theslideND2 primitive on line 23. The extra

copy materialises the slided view of the input data in memory, rendering the rest of the

convolution expression an ordinary matrix multiplication.

The following two scenarios describe how rewriting proceeds for direct and GEMM-

based convolutions.

Direct Convolution First, input data is zero-padded along all four edges on line 24

as required by the convolutional layer specification. The result is zero-padded again

along the right and bottom edges by the padExtra2D RP on line 6. Extra padding

allows more flexibility when tuning the tile sizes. Both padding operations are virtual

since they are applied on the input data view by the pad primitive (see Section 2.3.1.2

for more details about pad). Instead of padding data in memory, the compiler uses

the View System to alter the array access of the user function to simulate padding.

In the generated OpenCL kernel, the access is wrapped in an if-conditional checking

the access index expression: if a given access points into the virtual padding area, a

constant value of zero is returned and no memory access is performed. Section 2.3.2.2

covers the View system in more detail.

On a GPU, branching control flow comes with a performance penalty, so extra

optimisation effort is required to achieve efficient virtual padding. The kernelFission

RP on line 6 reduces the overhead of branching by making a copy of the padded data

efficiently in a separate OpenCL kernel. Optionally, it also transforms the data layout

during the copy operation to improve reading efficiency during convolution.

The copy is passed to the slideND2 primitive on line 23. After the spatial sliding,

input data dimensionality can be reduced for easier rewriting. The 3D sliding windows

are flattened on line 22 as per the original expression; the joinSplitND RP optionally

flattens the 2D array of windows into a 1D array.

For direct convolution, the RPs padExtra1D and kernelFission on line 7 are not

needed; since RP application is optional, we can expect these two RPs to get eliminated

for the best direct convolution candidate.

6.2. Rewrite Points 135

im2col For GEMM-based convolution, copying pre-padded data before sliding is un-

necessary since we expect a post-slide copy for the im2col operation. Since the appli-

cation of each RP is optional, there are rewriting sequences where the first kernelFission

(line 6) is eliminated, avoiding an extra copy.

The input data is pre-padded along the right and bottom edges on line 6; the result

is passed directly to slideND2 on line 23. Next, we perform finer-grained padding

of the input data by adding values “at the bottom right corner”. This is achieved by

reducing the dimensionality of the slided array from five to two on lines 7 and 22, and

padding the result using the padExtra1D RP on line 7. All of the above is performed

in a separate OpenCL kernel thanks to the kernelFission RP on line 7. By materi-

alising the padded and slided result at the end of the pre-processing stage in memory,

kernelFission achieves the im2col operation.

6.2.4.2 Weights Pre-Processing

The kernelFission RP on line 8 improves weights data access patterns for better

cache locality, and to create coalescing and vectorisation opportunities. It does so by

reordering elements in the flattened weights array on line 21 and materialising results

in memory within a separate OpenCL kernel.

6.2.4.3 Spatial Tiling

For both direct and GEMM-based convolution, the annotated expression creates three

opportunities for spatial tiling: on lines 10 and 13. Several levels of tiling are per-

formed to achieve several optimisations at once and to provide the subsequent paral-

lelisation pass with enough loop nesting to match the deep scheduling hierarchy of a

GPU. The abTile RPs tile both inputs and weights: as we will see in Section 6.2.5.2,

the RP is defined on a nest of twomaps traversing independent arrays A and B, and tiles

both.

All three RPs increase map nesting to create new parallelisation opportunities.

When the outermost maps get parallelised, the combined effect of the second abTile

and the preprocessing RPs is improved cache locality. The innermost abTile improves

data reuse: each pair of input and weight tiles is prefetched from global to private mem-

ory and reused across the iterations of loops generated bymapND2 and map on lines 14

and 15 respectively.

136 Chapter 6. Towards Guided Rewriting

6.2.4.4 Reduction Tiling

The two tileNestedMapReduce RPs on lines 11 and 12 tile the inputs and weights

across the dimension being reduced, namely the combined spatial and input channel

dimensions of the flattened sliding windows. Up to two extra reduce primitives are

inserted, creating a reduction tree. When both RPs are applied, the outer one creates a

parallelisation opportunity, wherein multiple chunks of a sliding window are reduced

in parallel by different threads. Since a sliding window must be reduced to a single

output, the results of the partial reduction of a sliding window must be aggregated by

a single thread. We will see in Section 6.3 that such parallel mapping is indeed found

for direct convolution. Using the synchronisation barrier insertion technique described

in Section 5.4, the compiler places an OpenCL barrier between the two stages of re-

duction to ensure that all chunks of a sliding window are partially reduced before one

of the threads aggregates them.

The inner tileNestedMapReduce adds an extra degree of tuning control over data

reuse: the extra tile size controls the portion of each sliding window and convolutional

kernel that is prefetched by abTile on line 13. This interaction with the inner abTile

is made possible by defining the reduction tiling RP over areduce nested insidemaps.

When defined over justreduce and placed inside the innermost abTile, the reduction

tiling RP has no control over the total amount of data prefetched by abTile for each

pair of input and weight tiles.

The tile sizes used by the tileNestedMapReduce RPs also affect memory con-

sumption. Small reduction tile sizes achieve higher degrees of parallelism at the ex-

pense of the memory required to store the intermediate results. The RP exposes the

tile sizes to the arithmetic constraint solver to allow finding the balance exploratively.

6.2.4.5 Private Memory Optimisation

The two RPs on line 16 optimise register usage bymap andreduce.

privatiseAccumulator places the reduction accumulator in private memory to re-

duce the overhead of repeated accesses to the accumulator.

6.2.4.6 Post-processing

As we will see in Section 6.2.5.10, each instance of padExtraND introduces an extra

OpenCL kernel at the end of the expression to remove the extra padding from the final

result. When multiple instances of padExtraND are applied, some depadding OpenCL

6.2. Rewrite Points 137

1 joinSplitND extends RewritePoint {
2 structParams = List(); tuningParams = List()

3 pattern = nestedRPs(mapND‖−→N ‖(f)): [T]−→N ⇒ [U]−→N
4 def rewrite(nestedRPs, f,

−→
N) = {

5 return splitND‖−→N ‖(
−→
N) o nestedRPs(map(f)) o join‖−→N ‖−1 }}

Listing 6.5: Join-split rewrite point definition.

kernels could be fused to reduce the memory access overheads. However, since only

one padExtraND RP at a time is expected to benefit a given convolution algorithm,

post-processing OpenCL kernel fusion is left for future work.

We now look at the definition of each rewrite point.

6.2.5 Expressing Optimisations Through Rewriting Points

6.2.5.1 Flattening

The opposite of the “tiling” rewrite point splitJoin in Listing 6.2 is the “flattening”

RP joinSplitND in Listing 6.5. Because of its simple function, the RP uses no struc-

tural or tuning parameters beyond the skip parameter determining whether the whole

RP is applied or eliminated.

As per line 3 of Listing 6.5, the RP is defined on an N-dimensional map nest. The

rewritten function on line 5 first flattens the argument completely, then applies the

original function f within onemap and splits the flattened result to preserve the original

return type.

Similarly to splitJoin, the inserted join and split primitives are expected to

alter the overall pattern of the original function significantly. To preserve the applica-

bility of the potential nested RPs, they are captured on line 3 and inserted around the

map on line 5.

This trivial transformation simplifies the rest of the optimisation process. In convo-

lution, joinSplitND abstracts away the algorithmic detail that the input has two spatial

dimensions, highlighting the traversal of two independent arrays (inputs and weights)

by the immediately nested maps. This simplifies abTile and tileNestedMapReduce

RP design: their patterns do not need to detect and preserve the dimensionalities of the

two arrays. Thanks to joinSplitND, each application of AB-tiling and nested map-

reduce tiling produces one less map. Fewer maps produce fewer tuning constraints,

138 Chapter 6. Towards Guided Rewriting

1 abTile extends RewritePoint {
2 structParams = List()

3 tuningParams = List(tileSizeA: Int, tileSizeB: Int)

4 pattern = (a, b) ⇒ nestedRPs(map(map(f) << b) << a)

5 def rewrite(nestedRPs, f) = {
6 return (a, b) ⇒ map(join) o join o interchangeMaps(

7 map(tileA ⇒ let(tileACopy ⇒
8 map(tileB ⇒ let(tileBCopy ⇒
9 nestedRPs(map(map(f) << tileBCopy) << tileACopy)

10) o materialise(p ⇒ p) << tileB) o split(tileSizeB) << b

11) o materialise(p ⇒ p) << tileA) o split(tileSizeA) << a) }}

Listing 6.6: AB-tiling rewrite point definition.

which simplifies constraint solving. Finally, tuning is also improved: since one tile

size is used across several flattened dimensions, the total number of tuning parameters

is smaller, and the number of valid tile sizes is increased.

6.2.5.2 AB-tiling

The AB-tiling RP is defined on a generic pattern, wherein some function f is applied

on all combinations of elements from independent arrays A and B. The functional

definition of this pattern is provided on line 4 of Listing 6.6. The rewrite function on

line 5 performs four crucial transformations. Firstly, it tiles a and b independently on

lines 10 and 11 and flattens the results back on line 6, not unlike the splitJoin RP.

Secondly, the number ofmaps is doubled to iterate both across tiles and their elements;

this creates new parallelisation opportunities. Thirdly, abTile optionally prefetches

one tile of a and b each on lines 10 and 11 respectively using the materialise RP

defined later in Section 6.2.5.5. Each pair of copies is reused inside the original map

nest inserted on line 9; when copies are placed in a faster memory, access overhead

is reduced. Finally, line 6 optionally interchanges the maps iterating over the tiles of

a and b using the interchangeMaps RP. Section 6.2.5.7 shows how map interchange

creates a new parallelisation opportunity.

The nested RPs captured on line 4 are inserted around the innermap nest on line 9.

Such placement of nestedRPs allows nesting multiple instances of abTile and

tileNestedMapReduce effectively.

The main purpose of the abTile RP is to exploit the opportunity for data reuse

6.2. Rewrite Points 139

1 reduce(0, f) o map(g) 7−→
2 reduce(0, f’) o map(reduce(0, f) o map(g)) o split(..)

Listing 6.7: Reduction tiling.

presented by the nested loops over a and b. While the tiling behaviour of abTile

resembles that of two instances of splitJoin applied independently on a and b, the

results are different. Applying splitJoin on map(g) << a would nest the map over

elements of tileA immediately within themapover tiles of a. In abTile, however, it is

sunk into themap over the tiles of b (line 8). This difference allows prefetching tileA

before iterating over the tiles of b.

6.2.5.3 Nested Map-Reduce Tiling

While AB-tiling can be used to partition the independent dimensions of inputs and

weights, further tiling is necessary within the scope of a sliding window, i.e., across

the reduced dimensions. The sliding window tends to have a wide input channel di-

mension – up to 512 elements in VGG. Due to the large total size of the sliding window,

sequential reduction leads to under-saturation of the GPU cores, while prefetching the

entire window results in register spilling. The compiler must be able to fetch one win-

dow tile at a time and reduce it independently from the other tiles.

Reduction Tiling As shown in Listing 6.7, the reduced dimension requires a differ-

ent tiling approach than that of abTile due to the data dependencies of the reduction

pattern. After tiling the argument, the original map-reduce is applied on each tile. In-

termediate results are passed to the additionalreduce, which produces the final results.

Composability With Prefetching Prefetching only part of a sliding window at a

time requires that the prefetching RP (abTile) is applied on a single window tile.

Consequently, window tiling must occur before prefetching; in the top-down rewriting

order, this is achieved by nesting the prefetching abTile in the tileNestedMapReduce

RP. Furthermore, for abTile to remain applicable after tiling reduction, the map nest

over inputs and weights must be nested inside tileNestedMapReduce together with

abTile as per the following pattern:

140 Chapter 6. Towards Guided Rewriting

tileNestedMapReduce(abTile(

map(aEl ⇒ map(bEl ⇒
reduce(0, f) o map(g) << zip(aEl, bEl)) << b) << a))

Composability with prefetching motivates defining the tiling RP on map-reduce

inside a map nest instead of just map-reduce. Although the latter is easier to pattern-

match and transform, combining it with prefetching requires extra RPs and longer

rewriting sequences. Coarse-grained RPs such as nested map-reduce tiling comple-

ment the fine-grained rewrite rules-based approach by truncating the design space more

aggressively.

The Final Reduction Operator The final component of the reduction tiling mech-

anism is determining the final reduction operator. In Listing 6.7, f’ is not the same

function as f. Consider the following example:

reduce(0, (acc, x) ⇒ acc + c*x) o map(g) 7−→
reduce(0, +) o map(reduce(0, (acc, x) ⇒ acc + c*x) o map(g)) o split(..)

Here, the original reduction operator – addition and multiplication – cannot be used

in the final reduction lest the multiplication is performed too many times. Only part of

the original function – addition – can be used as a final reduction operator.

Extracting the final reduction operator from the original reduction function in the

general case is an open research problem. As a workaround, the tileNestedMapReduce

RP shifts the burden of determining the operator onto the user. Specifically, the RP

takes a LIFT function as an extra argument and inserts it in place of the final reduc-

tion operator. In convolution, where input elements are multiplied by weights and the

results are added together, the final reduction operation is addition.

The Full Pattern The full definition of nested map-reduce tiling is provided in List-

ing 6.8. The pattern on lines 3 to 7 defines the RP on a function that takes two argu-

ments with at least two dimensions each – an independent dimension and a reduced

dimension. The map nest on line 4 applies the following on each row of a and b.

Firstly, some function g is applied on each pair of corresponding elements of rowA

and rowB. Then, the results of g are reduced to one value per row pair using some

function f as a reduction operator. The entire pattern is bound to the compiler variable

matchedMapReduce on line 3 to be reused within the rewritten function. The variable

6.2. Rewrite Points 141

1 tileNestedMapReduce(reduceFun: (S,S)⇒ S) extends RewritePoint {
2 structParams = List(); tuningParams = List(tileSize: Int)

3 pattern = matchedMapReduce @ (nestedRPs(

4 (a: [[T]K]N, b: [[U]K]M) ⇒ map(rowA ⇒ map(rowB ⇒
5 reduce(f: ((S,V)⇒ S)) o

6 map(g: ((T,U)⇒V)) << zip(rowA, rowB)

7) << b) << a))

8 def rewrite(matchedMapReduce , M) = {
9 return ((a, b) ⇒ split(M) o

10 interchangeReduceND(privatiseAccumulator(

11 reduce(map(reduceFun) o join)

12)) o splitJoinND(map(tileAB ⇒ matchedMapReduce << tileAB)

13) << zip(transpose() o map(split(tileSize)) << a,

14 transpose() o map(split(tileSize)) << b)) }}

Listing 6.8: Nested Map-Reduce Tiling rewrite point definition. The asperand

symbol (@) on line 3 denotes binding the matched expression to a variable. In this

example, the entire matched pattern is bound to matchedMapReduce.

matchedMapReduce is provided to rewrite on line 8 by the pattern.decompose

function discussed in Section 6.2.1.

Divide And Conquer The transformed expression on lines 8 to 14 uses the divide-

and-conquer approach. First, a and b are tiled along the reduced dimension on lines 13

and 14 and transposed; the new types are [[[T]tileSize]N] K
tileSize

and [[[U]tileSize]M] K
tileSize

,

respectively. With the tiled dimension brought outwards through transposition, the

conquer stage begins: the map on line 12 applies the original nested map-reduce on

each tile separately. The intermediate results are passed to the finalreduce on line 11.

Withinreduce, the two independent dimensions of a and b (of sizes N and M, respec-

tively) are joined, and the final reduction operator provided by the user is applied. The

independent dimensions are reconstructed using thesplit on line 9. The join-split of

the last stage helps simplify further rewriting.

Further Rewriting tileNestedMapReduce inserts three new RPs to optimise the

transformed expression further. The splitJoinND RP on line 12 tiles themap to create

new parallelisation opportunities. interchangeReduceND on line 10 sinks thereduce

primitive deeper into its inner map nest: first, it tiles the inner map nest to increase the

142 Chapter 6. Towards Guided Rewriting

1 kernelFission extends RewritePoint {
2 structParams = List(); tuningParams = List()

3 pattern = f o g

4 def rewrite(f, g) = {
5 return optimiseDataLayout(f o oclKernel(materialise(g))) }}

Listing 6.9: Kernel Fission rewrite point definition.

number of maps, then, it interchanges reduce with one of the inner maps. This in-

terchange creates new parallelisation opportunities by replacing the sequentialreduce

with a map that can be fused with a map on line 12. Finally, privatiseAccumulator

on line 10 allocates the reduction accumulator in the faster private memory.

The nested RPs captured on line 3 are inserted into the transformed expression

within matchedMapReduce on line 12. Since their input function does not change, the

entire transformation does not affect their applicability. This allows nesting multiple

instances of tileNestedMapReduce to produce a reduction tree of arbitrary depth.

Generalisability Although the presented RP is defined on a two argument-function,

generalising the pattern and the transformation to a variable number of arguments and

levels of map nesting is straightforward. Despite its coarse granularity, the overall

functional pattern on lines 3 to 7 is encountered in many applications such as those

depending on matrix multiplication.

6.2.5.4 Kernel Fission

Generally, fusing OpenCL kernels is beneficial due to reduced intermediate memory

consumption and scheduling overheads. However, kernel fission can be an efficient

synchronisation tool for multi-stage computation. It is preferable to the local synchro-

nisation of OpenCL barriers when the two stages require significantly different work

group configurations. Performing both stages with the same work group configuration

results in idle work groups and undersaturated compute cores.

Thanks to LIFT’s host code generation capabilities [Sto21], multi-kernel manage-

ment is nearly transparent to the user. Assigning a subexpression to a separate OpenCL

kernel is performed using the oclKernel primitive. oclKernel is a first-class citizen

of the IR and is therefore rewritable – a property leveraged by the kernelFission RP

defined in Listing 6.9. The RP is defined on the composition of two functions f and g

6.2. Rewrite Points 143

1 materialise extends RewritePoint {
2 structParams = List(targetMem: AddressSpace)

3 tuningParams = List()

4 pattern = f: T ⇒ [U]N

5 def rewrite(f) = {
6 return joinSplitND(splitJoinND(map(toMem(targetMem)(id)))) o f }}

Listing 6.10: Materialisation rewrite point definition.

on line 3. The first function to be computed – g – is wrapped inoclKernel on line 5.

The rewritten expression computes g in an OpenCL kernel which is separate from that

of f; the result of g is written to memory using the materialise RP.

The kernelFission RP creates two new rewriting opportunities to optimise the

transformed expression further. As we will see in Section 6.2.5.5, the materialise RP

uses tiling to help parallelise and vectorise reading and writing. While materialise

leaves the target address space up for exploration, the OpenCL programming model

requires that the results of an OpenCL kernel are placed in the global memory to be

accessible by other kernels. This requirement is enforced as a compiler check. It can

also be enforced during the structural parameter exploration by inferring a constraint

on the target memory choice.

The optimiseDataLayout RP reorders the results of g in memory for a more opti-

mal reading pattern in f. We will see in Section 6.2.5.6 how the optimiseDataLayout

RP performs reordering by insertingtransposeWND to change the writing pattern of g

and a transposeND to adapt the subsequent reading pattern of f to the transformed

data layout in memory. This reordering of an OpenCL kernel outputs is a crucial part

of the input and weights preprocessing in convolution since it improves cache locality

and achieves access coalescing.

6.2.5.5 Materialisation

The RP in Listing 6.10 optionally inserts a write operation after the input function

of any type with at least one output dimension. The target memory address space

is chosen through a structural parameter. Application of this RP could benefit the

implementation in three cases:

• When there is no preceding write operation, i.e., when the input function and its

argument only transform the virtual data layout (View) of the argument to the

144 Chapter 6. Towards Guided Rewriting

entire LIFT program. The newly inserted write operation commits the accumu-

lated virtual data layout transformations to memory. The new layout might yield

a better reading pattern in the subsequent memory accesses.

• When the input function writes in a slow memory address space. Transferring

data to a faster memory (e.g., registers) – prefetching – improves overall perfor-

mance if the data is accessed repeatedly later.

• When there is no subsequent write operation until the end of the OpenCL kernel.

When the targetMem parameter is set to global memory, the outputs of the LIFT

program are made available beyond the lifetime of the OpenCL kernel.

The RP is defined on a function f of any type with at least one output dimension on

line 4 of Listing 6.10. On line 6, the output of f is copied using the scalar identity func-

tion id. The toMemmacro expands to either toGlobal, toLocal or toPrivate. The

choice of the target memory is predicated on the value of the targetMem parameter.

Even though the output of f can have any non-zero number of dimensions, the RP

inserts only one map in the transformed expression. Such brevity is made possible by

the joinSplitND RP, which flattens the output of f to one dimension, and restores the

dimensionality afterwards. To create parallelisation and vectorisation opportunities,

splitJoinND splits the argument and increases the depth of the map nest. The new

number of dimensions and their sizes are both parametric within splitJoinND.

Discarding the original dimensionality of the output of f and splitting it anew gives

the compiler a fine-grained control over parallelisation of the potentially expensive

read and write operations of the identity function. Thanks to this design, the paralleli-

sation opportunities are decoupled from the number and sizes of the original dimen-

sions of the input data.

Prefetching a subset of data into a faster memory before reusing it is invaluable

for a memory-bound problem such as convolution-based image recognition [Siu18].

Expressing the choice of the target memory as a parameter allows the constraint solver

to explore the trade-off between memory optimisation and register spilling.

6.2.5.6 Data Layout Optimisation

An optimal memory access pattern depends on multiple factors, including parallelisa-

tion strategy, cache size and cache line size. The rewrite point in Listing 6.11 opens

the space of memory layouts up for exploration by reordering the final write of the

6.2. Rewrite Points 145

1 optimiseDataLayout(n: Int) extends RewritePoint {
2 structParams = List(

−−−−−−−−−−−→
newDimOrder: Vector(n+1)〈Int〉)

3 tuningParams = List(factor1: Int, .., factorN: Int)

4 pattern = f o (g: T ⇒ [U]−→M)

5 def rewrite(f, g,
−→
M) = {

6 reorderOnWrite = transposeWNDn(
−−−−−−−−−→
newDimOrder) o

7 splitNDn(factor1, .., factorN) o joinND
(‖−→M‖−1)

8 restoreOrderOnRead = splitND‖−→M‖(
−→
M) o joinNDn o

9 transposeNDn(
−−−−−−−−−→
newDimOrder

−1
)

10 return f o restoreOrderOnRead o reorderOnWrite o g }}

Listing 6.11: Data Layout Optimisation rewrite point definition. Parameter n determines

reordering granularity. n is chosen by the user.

first function in a pair of composed functions. The subsequent read is also reordered

to achieve the original order with a new access pattern. The composite function on

line 10 inserts the two reordering operations in-between two composed functions. In

the simplest case, the transformation is following:

f o g 7−→ f o transpose o transposeW o g

Although the two transpositions seem to cancel each other and do not change the

reading order within f, the memory access patterns are transformed. transposeW

changes the layout of the data written by g;transpose adapts the reading pattern of f

to the new data layout. The transformed reading pattern might be coalesced and more

cache-friendly.

Reordering The reordering is performed on lines 6 and 7 as follows. First, the argu-

ment – the result of g – is flattened into a 1D array. Then, it is split into n+1 dimensions,

where the sizes of the inner n dimensions are determined by the tuning parameters on

line 3. Finally, the new dimensions are transposed according to the new order deter-

mined by the structural parameter newDimOrder. The transposition is performed using

transposeWND, meaning the write performed by g materialises it.

In the combination ofsplitND andtransposeWNDon lines 6 and 7, the parameters

of splitND act as reordering factors. Larger chunk sizes lead to coarser-grained re-

ordering. The user-chosen parameter n determines the depth of splitting; larger values

of n create more axes of transformation at the cost of increased search space.

146 Chapter 6. Towards Guided Rewriting

Parameter newDimOrder takes a vector of integers corresponding to dimensions

zero to n (inclusive), where the position of the dimension id in the vector determines

its position in the transposed array on line 6. Vector [0,1,..,n] corresponds to the

original order; [1,0,..,n] transposes the two outermost dimensions, and so on.

Order Restoration The inverse dimension order is denoted as
−−−−−−−−−→
newDimOrder−1; it is

used to negate the write transposition and achieve the original reading order. If the new

order of dimension d is denoted as
−−−−−−−−−→
newDimOrder(d), its inverse order is determined

using the following inverse function:

−−−−−−−−−→
newDimOrder

−1
(d) =

−−−−−−−−−→
newDimOrder.indexOf(d) (6.1)

Where indexOf returns the position of the argument in the vector. The inverse or-

der vector is used on line 9, where transposeND reorders the read performed by f to

achieve the original reading order. To restore the original shape, the result of transposi-

tion is flattened and split again using the original shape of the input function result (
−→
M).

Detection of Reads and Writes An extra check is required to confirm whether f

and g refer to a subsequent read and a preceding write operations, respectively. Re-

ordering elements without a preceding write breaks the semantics of the program since

transposeWonly applies to writing operations. Similarly, the absence of a subsequent

read renderstranspose useless.

Checking whether f and g are concrete – i.e., write to memory – is straightforward

in LIFT. The ASTs of both are traversed, and if each contains a user function, the

check is successful. Since the RP itself could be composed with a preceding write and

a subsequent read, it might be applicable even if f or g are abstract. In such case, the

validity of the RP application can be established by analysing the view trees of f and g.

6.2.5.7 Map Interchange

Interchanging directly nested maps creates new parallelisation opportunities. Specifi-

cally, it addresses the parallelisation restriction discussed in Section 5.3.4.3: amapLcl

cannot contain a mapWrg inside. For example, the following parallel mapping is not

allowed:

mapLcl(0)(mapWrg(0)(f) << b) << a

6.2. Rewrite Points 147

1 interchangeMaps extends RewritePoint {
2 structParams = List(); tuningParams = List()

3 pattern = (a, b) ⇒ nestedRPs(map(map(f) << b)) << a

4 def rewrite(f) = {
5 return (a, b) ⇒ transposeW o nestedRPs(map(map(f) << a)) << b }}

Listing 6.12: Map Interchange rewrite point definition.

However, when the array b contains significantly more elements than can be pro-

cessed in parallel by a single work group, it is be better to parallelise b across mul-

tiple work groups. map interchange allows achieving this by swapping the loops:

mapWrg(0)(mapLcl(0)(f) << a) << b

The Map Interchange RP is presented in Listing 6.12. In addition to swapping

the loops, a transposeW is inserted after the map nest to preserve the original result

ordering in memory. For transposeW to take effect, function f needs to be concrete.

This can be confirmed by checking whether f or the arguments of RP contain user

functions.

6.2.5.8 Reduce Interchange

Interchanging reduction with one of its inner maps allows parallelising the reduction

operator and accumulator initialisation without a synchronisation overhead. This trans-

formation is similar to ROW-TO-COLUMN REDUCE transformation in DMLL [Bro16].

The reduce primitive takes two expressions as arguments: the accumulator ini-

tialiser and the array to reduce. Consider the following example, where the accumula-

tor is initialised to an array of zeros:

reduce(map(f), init = map(id) << value(0, [T]N))

There are two ways to parallelise reduction in this expression. The first is to parallelise

the innermaps:

reduceSeq(mapGlb(0)(f), init = mapGlb(0)(id) << value(0, [T]N))

This approach requires a synchronisation barrier between the accumulator initialiser

and the reduction operator. Furthermore, since the private memory is not shareable, a

148 Chapter 6. Towards Guided Rewriting

1 interchangeReduceND 7−→ interchangeReduce2D | interchangeReduce3D
2 | interchangeReduce4D | ..
3

4 interchangeReduce4D extends RewritePoint {
5 structParams = List(newReduceDim: Int)

6 0 > newReduceDim < 4

7 tuningParams = List(factor0: Int, factor1: Int)

8 pattern = nestedRPs(reduce(map(f) o g))

9 def rewrite(nestedRPs, f, g) = {
10 interchangedReduce = (switch (newReduceDim) {
11 1: map(nestedRPs(reduce(map(map(f))))) o transposeND4(1, 0, 2, 3)

12 2: map(map(nestedRPs(reduce(map(f))))) o transposeND4(1, 2, 0, 3)

13 3: map(map(map(nestedRPs(reduce(f))))) o transposeND4(1, 2, 3, 0) })
14 return joinND2 o interchangedReduce o

15 map(splitND2(factor0, factor1) o g) }}

Listing 6.13: Reduce Interchange rewrite point definition.

parallelisedmap cannot return a private array; hence, the accumulator has to be placed

in the slower local or global memory.

An alternative approach is to interchange reduce with its inner map, enabling a

more efficient parallel mapping:

reduce(map(f), init = map(id) << value(0, [T]N)) 7−→
map(reduce(f, init = id << value(0, T))) o transpose 7−→
mapGlb(0)(reduceSeq(f, init = id << value(0, T))) o transpose

Now, the same thread applies g, initialises the accumulator and applies the reduction

operator. No synchronisation is required, and the accumulator can be placed in a reg-

ister.

A Deeper Map Nest The rewrite point in Listing 6.13 interchanges reduction with

its inner maps. While the pattern on line 8 matches only a one-dimensional inner map,

the RP splits it into multiple maps before choosing how deep to sink reduce into the

innermap nest.

A deeper map nest allows finer-grained control over the new memory access pat-

tern and creates more parallelisation opportunities. The number of maps to create is

determined by the dimensionality of the RP, which is chosen by the user or explored.

A 2D RP adds no maps to reduce(map(f)); a 3D RP adds one map, and so on. The

6.2. Rewrite Points 149

number of iterations within each new map is controlled by the tuning parameters on

line 7.

Interchange The interchange proceeds as follows. As per the general case defined

in the pattern on line 8, each element of the reduced dimension is processed by some

function g before being reduced within the original inner map(f). The rewritten ex-

pression applies g on each reduced element on line 15. The result is split using the

tuning parameters to create new array dimensions for the interchanged map nest in

interchangedReduce on line 14. Finally, the extra dimensions are flattened to pre-

serve the input function type.

The new position ofreduce in themapnest is controlled by the structural parameter

newReduceDim. The value of one corresponds to sinking reduce down one map; the

value of two corresponds to sinking down twomaps, and so on. The newmap nest with

the interchangedreduce is built on lines 10 to 13.

Based on newReduceDim, the array is first transposed to sink the new reduced

dimension inwards. The reduced dimension is originally the outermost according

to the input function pattern; therefore, it corresponds to zero in the arguments to

transposedND4 on lines 11 to 13. After transposition, the reduce is placed inside the

map nest accordingly and wrapped in the captured nested RPs since they are likely

to be defined on a reduce. No extra transposition is required to restore the original

data layout since only the reduced dimension has been affected, and that dimension is

eliminated byreduce.

Impact Reduction is often best performed with the accumulator placed in a private

memory and the final result copied to the global or local memory. We will see in

Section 6.2.5.9 how the accumulator memory is optimised within another RP and an

extra copy inserted after the reduction. By interchanging reducewith its inner maps,

interchangeReduceND lessens the amount of intermediate memory required for the

accumulator, relieving register pressure.

The argument to the input function could already be transposed across multiple di-

mensions through the RPs such as optimiseDataLayout. Since the extramaps brought

outside reduce are parallelised independently, the map nest can match the new data

layout and achieve coalesced memory access pattern.

150 Chapter 6. Towards Guided Rewriting

1 privatiseAccumulator extends RewritePoint {
2 structParams = List(resultMem: AddressSpace)

3 tuningParams = List()

4 pattern = nestedRPs(reduce(init, g))

5 def rewrite(nestedRPs, init, g) = {
6 return toMem(resultMem)(id) o

7 nestedRPs(reduce(toPrivate(id) << init, g)) }}

Listing 6.14: Accumulator Privatisation rewrite point definition.

6.2.5.9 Accumulator Privatisation

The reduction pattern depends on an accumulator to store the intermediate results. The

accumulator is read and updated once per each element in the reduced array. Such a

high access rate warrants placing the accumulator in the register memory.

The RP defined in Listing 6.14 inserts a private copy operation into accumulator

initialisation on line 7. Private initialisation forces the compiler to allocate the accu-

mulator in registers. Once the reduction is completed, the result is copied again on

line 6. The result memory is chosen through exploration using the structural parameter

resultMem. An optimal choice depends on how the result is accessed elsewhere in the

program and the tile sizes.

6.2.5.10 Extra Padding

The one-dimensional array indexing approach of OpenCL is flexible when it comes

to tile sizes. Picking a tile size to fit the target platform – its memory and parallel

computation capabilities – requires considering only one array dimension, and tiles do

not have to cover it precisely. If the last tile spans beyond the array bound, the illegal

access can be skipped using an if-conditional or a loop terminating condition.

The functional patterns and the multidimensional arrays of LIFT impose more re-

strictions on tiling. Each array dimension has to be covered by tiles without spanning

beyond the array bounds. This restriction limits tile sizes to factors of the correspond-

ing array sizes and ties the success of tiling to the input data dimensions.

Padding breaks the link between tiling and the input data dimensions. By adding

zeros at the end of an array dimension, the padExtraND rewrite point in Listing 6.15

creates additional tile size choices. The amount of padding is determined by a tuning

parameter on line 4, leaving it up to the constraint solver to find the balance between

6.2. Rewrite Points 151

1 padExtraND 7−→ padExtra1D | padExtra2D | ..
2

3 padExtra1D extends RewritePoint {
4 structParams = List(); tuningParams = List(p: Int)

5 pattern = matchedFun @ {
6 (depaddablePattern : [T]N ⇒ [U]M)

7 val depaddablePattern = {
8 join o depaddablePattern

9 | split o depaddablePattern

10 | slideNDK o depaddablePattern

11 | map(f) o depaddablePattern

12 | nestedRPs(depaddablePattern) o depaddablePattern

13 | oclKernel(depaddablePattern) o depaddablePattern

14 | ε }}
15 def rewrite(matchedFun , M) = {
16 prepad = pad((0, p), 0)

17 depad = oclKernel(map(id)) o take(M)

18 return depad o matchedFun o prepad }}

Listing 6.15: Extra padding rewrite point definition. The vertical bar symbol (|) on lines 9

to 14 denotes alternative patterns (logical disjunction). Epsilon on line 14 denotes an

empty pattern equivalent to an identity function. The subpattern depaddablePattern

is bound to a variable on line 7 to enable recursive calls on lines 9 to 13.

optimal array size for tiling and extra memory consumption.

The RP pattern definition on lines 5 to 14 encodes four restrictions on patterns

where padding is possible and depadding is straightforward.

1. The input function argument must be an array to be paddable and depaddable.

2. The input function return type must be an array to be paddable and depaddable.

3. The input function must preserve the ordering within the padded dimension.

4. The input function result must not change when the argument array is padded

with zeros.

The overall pattern type [T]N ⇒ [U]M on line 5 encodes the first two restrictions. The

third restriction requires the padding and its derivative values must remain on the right

edge of the array. Reordering the argument or the result through scatter, gather

152 Chapter 6. Towards Guided Rewriting

andtranspose complicate removing the extraneous elements – depadding – from the

result. By restricting the pattern, the RP allows a straightforward depadding approach.

Finally, the pattern excludes expressions in which the result changes by padding the

argument array with zeros. Reduction, for example, is excluded in the general case:

although zero-padding does not affect addition or subtraction, it does change the result

of multiplication or division.

The recursive subpattern on lines 7 to 14 encodes restrictions three and four. Only

the primitives that do not reorder the array are allowed on the padded dimension;

line 11 allows all primitives on other dimensions. Line 12 captures the potential nested

RPs within the overall expression bound to matchedFun on line 5 to give the rewrite

function control over the new placement of nestedRPs.

The composite expression on line 18 has three stages: prepadding, the matched

input function and depadding. Prepadding is defined on line 16 using thepadprimitive

adding no elements on the left, and p elements on the right of the argument. Depadding

on line 17 removes the output elements produced by the application of matchedFun on

the padding within the argument.

The number of elements to remove depends on matchedFun and may not be equal

to the number of elements added (p). For example, a join in matchedFun might in-

crease the amount of depadding required. It is easier to infer the number of elements to

preserve – M – as it is captured in the overall type of the input function on line 5. Line 17

truncates the result to M elements using thetakemacro defined in Section 2.3.1.3.

By default, the padding introduced within this RP is virtual. The inserted pad

primitive transforms the view so that the next read is performed through an inline if.

The conditional expression returns either an array element or a zero based on the access

index. However, since branching is expensive on a GPU, padExtraND is best combined

with kernelFission, which materialises a padded view in memory within a separate

OpenCL kernel. Then, subsequent repeated accesses do not have to be performed

through an if-conditional. The convolution expression in Listing 6.4 combines the

padding and kernel fission RPs on lines 6 and 7.

Similarly topad,take is a view transformation. As seen in Section 2.3.1.3,take(m)

preserves the first m elements of the argument and discards the rest. The truncated re-

sult is materialised on line 17 using an identity user function. Depadding is performed

in a separate OpenCL kernel to reduce the negative impact of branching introduced

by the take macro. While the main computation is expected to take place within

matchedFun, depadding can be performed separately using a better-suited work group

6.3. Evaluation 153

configuration.

Higher-dimensional versions of padExtraND are defined similarly. The pattern

prohibits reordering on N outer dimensions; the transformed expression uses the N-

dimensional versions ofpad andtake.

6.2.6 Summary

While the arrangement of RPs in Listing 6.4 enables a specific set of optimisations,

the compiler still has a degree of freedom in choosing alternative designs since the

application of RPs is optional and parametric. The desired strategy can be further rein-

forced by imposing manual constraints on structural parameters: for example, the two

abTile instances on line 10 can be prohibited from issuing memory copy operations,

while the copies in the inner abTile can be restricted to private memory only. The

manual constraints provide means of fine-grained user control over the optimisation

process.

As a part of the LIFT IR, RPs are type-safe and have no side effects, which reduces

the expertise required to apply them safely. Since RPs are based on pattern-matching,

incorrect placement can be detected and reported as a warning, thus helping to use

them efficiently. Finally, as first-class citizens of the LIFT IR, RPs yield to rewriting

themselves like the rest of the language primitives, allowing complex optimisations

to be achieved automatically through composition and nesting of RPs. This prop-

erty has proven useful during the design stage of this chapter where a set of diverse

optimisation techniques across both the direct and GEMM-based convolution turned

out to be expressible with a small set of generic RPs as building blocks. The exam-

ples include splitJoinND used in both materialise and tileNestedMapReduce, and

materialise used in kernelFission and abTile.

6.3 Evaluation

This chapter evaluates the expressivity of rewrite points by analysing the alternative

implementations generated by applying rewrite points automatically. First, it presents

the best performance and memory consumption achieved through the RP approach

and compares them with the alternative code generation methods. Then, the chapter

breaks down the runtime of generated kernels in stages to see where the time is spent.

Next, the chapter examines the design choices leading to the best performance and

154 Chapter 6. Towards Guided Rewriting

memory consumption, and analyses the rewriting sequences performed by the com-

piler to achieve these choices. Finally, the size of the search space is briefly analysed,

highlighting the challenge of automatic exploration.

This chapter makes a case for the expressive power of the functional rewrite points

approach. We will see that the compiler can rewrite the single high-level expression

into both direct and GEMM-based convolution. The same set of RPs optimises both

methods and achieves performance comparable to that of a vendor-provided handwrit-

ten kernel library and a state-of-the-art code generator.

6.3.1 Experimental Methodology

Convolution implementations of LIFT, ARM Compute Library and TVM are mea-

sured across the nine unique layer configurations of the VGG-16 model [Sim14]; the

layer configurations are provided in Table 4.3. The implementations are run on the

ARM Mali-G72 (12 cores) mobile GPU of the HiSilicon Kirin 970 SoC using Debian

GNU/Linux 9.8. The GPU frequency is set to 767Mhz, the highest level. The infer-

ence is performed over one image, as seen in streaming applications. This setup is the

same as in previous chapters.

Performance is measured in the number of floating point operations (FLOPs) per

second. Framework performance on a given VGG-16 layer is calculated as the theo-

retical number of FLOPs required by the layer configuration divided by the time spent

computing layer outputs. In the number of FLOPs per layer, multiplication-addition is

counted as two separate operations.

LIFT The high-level LIFT convolution expression in Listing 6.3 is annotated with

RPs as per Listing 6.4. The LIFT compiler is used to generate one set of OpenCL

kernels and a corresponding C++ host code per each layer of VGG as follows. First, the

parameter values expressing the configuration of a given VGG layer are substituted into

the high-level annotated expression. Early parameter substitution simplifies further

transformations and constraints. Then, the annotated expression is iteratively rewritten

to apply all RPs; for each RP, the compiler uses a constraint solver to pick structural

parameter values that drive RP application. The solver is provided with manually-

defined constraints to pick a specific combination of structural parameter values. The

values encode design decisions known to achieve good performance on a given VGG

layer.

6.3. Evaluation 155

Applying all RPs produces an intermediate LIFT expression with no RPs, but with a

high level ofmapnesting and a variable number of tuning parameters. The next stage is

parallelisation and map fusion. As discussed in Chapter 5, each map is associated with

an arithmetic parameter encoding parallelisation choices as integers. The compiler also

generates a set of integer constraints encoding parallelisation restrictions specific to a

given intermediate LIFT expression and a given platform. A constraint solver is then

used to pick a valid parallel mapping. The solver is provided with manually-defined

constraints to pick a specific parallel mapping informed by the exploration done within

the experiments of Chapter 5.

Next, the compiler tunes the simplified parallelised expression as per Chapter 4.

The expression is traversed to collect the tuning parameters inserted during RP appli-

cation; the compiler also generates constraints encoding valid tuning parameter values.

The solver picks tuning values using an additional set of manually defined constraints,

restricting choices to the combination known to achieve good performance. The picked

values are substituted into the LIFT expression.

The tuned expression is vectorised whenever possible as follows. A potential vec-

torisation opportunity is created by each sequential map which contains an identity

function, accesses global or local memory and writes into private memory. Among

suchmaps, those with a contiguous memory access pattern are vectorised.

The final design decision before code generation is the number of work groups.

The compiler picks the minimum number of work groups required to perform all work

in parallel. For each indexing dimension of OpenCL work groups, the compiler picks

the highest number of iterations performed by the corresponding instances of mapWrg

in the expression. The approach is similar for mapGlb, where the highest number of

iterations performed by instances of mapGlb is divided by the work group size in the

corresponding dimension.

Finally, code generation is performed. The compiler checks memory consumption

and inserts synchronisation barriers as discussed in Section 5.4. A single C++ host

program is generated, scheduling data transfers and the generated OpenCL kernels.

The program is run on the HiKey 970 board with random inputs, and the outputs are

validated using the PyTorch implementation of VGG. Each LIFT-generated program is

run three times; the median performance of 3 runs is reported. Memory consumption

is calculated using the memory allocation reports of the LIFT compiler.

156 Chapter 6. Towards Guided Rewriting

Constraint Solver The parameter values are picked by hand because the search

space is too large to explore automatically, given the limited time for experimentation.

Using a constraint solver to pick predetermined values ensures that good parameter

values can be found through automatic exploration given enough time. The library

used for constraint solving is the Choco-solver [Pru16] v4.10.1.

ARM Compute Library ARM Compute (v21.11) is used to produce direct and GEMM-

based implementations of the convolutional layers of VGG. Chapters 4 and 5 use an

earlier version of ARM Compute (v19.02) since those experiments were run prior to

the results of this chapter. Due to this chapter’s greater focus on GEMM-based con-

volution – the most performant approach among all those evaluated – the evaluation

uses a more recent version (v21.11). This version achieves higher top performance and

therefore provides a compelling baseline.

ARM Compute VGG-16 convolutional layer implementations are produced using

the ARM Compute auto-tuner run in the exhaustive mode with 100 iterations per layer.

Runtime is measured using OpenCL event profiling; the median runtime across all

iterations is reported. Memory consumption is calculated manually based on the direct

and GEMM algorithms.

TVM TVM (v0.6) is built with OpenCL support generated using LLVM version 4.0.0.

The Winograd strategy is disabled for fairness since it changes the nature of the com-

putation and uses a different convolution algorithm. TVM uses the Spatial Pack Con-

volution [Zhe18] applying im2col and GEMM on the tiled input. TVM compiler opti-

misation level is set to 3; the kernels are auto-tuned using GATuner. 1000 candidates

per VGG layer are explored, and a median runtime of 30 trials per candidate is reported

by the TVM auto-tuner. Memory consumption is calculated based on the intercepted

OpenCL memory allocation calls.

6.3.2 Performance and Memory Consumption

While the platform’s capabilities determine the actual number of operations per sec-

ond, the performance metric used hereon represents the number of convolution-related

operations per second. The lower values of the metric indicate that the time is spent

doing work beyond convolution – synchronising threads, performing unrelated com-

putations – or waiting for blocking reads and writes. Since the minimum number of

operations required for convolutional inference by VGG is predetermined, all useful

6.3. Evaluation 157

L0 L2 L5 L7 L10 L12, L14 L17 L19, L21 L24, L26
L28

0

25

50

75

Pe
rf

or
m

an
ce

[G
FL

O
Ps

pe
r

se
c]

Lift-Direct ARM-CL-Direct Lift-GEMM ARM-CL-GEMM TVM

AVG

25
28

46
62

26

ALL CONV

28

23

49
63

24

L0 L2 L5 L7 L10 L12, L14 L17 L19, L21 L24, L26
L28VGG layer

1

10

100

M
em

or
y

co
ns

um
pt

io
n

[M
by

te
]

Lift-Direct ARM-CL-Direct Lift-GEMM ARM-CL-GEMM TVM

AVG

10
9

36
36

27

MAX

27

25

12
8

12
8

61

Figure 6.3: Performance and memory consumption comparison of LIFT-generated pro-

grams versus ARM Compute- and TVM-generated kernels on VGG-16 layers. AVG

refers to the mean performance or memory consumption across all unique convolutional

layer configurations. ALL CONV refers to the performance across the entire convolution

of VGG-16 taking into account duplicate layer configurations.

operations beyond that number are performed to map computation onto the platform.

A well-optimised implementation does the minimum amount of work beyond the con-

volution itself to leverage hardware capabilities.

The results presented in Figure 6.3 illustrate how well the three frameworks map

convolution onto a Mali GPU. In direct convolution, the performance of LIFT-generated

programs is on par with those of the ARM Compute and TVM. In GEMM-based con-

volution, LIFT achieves 68% and 78% of hand-optimised ARM Compute performance

on average and across all VGG-16 convolutional kernels, respectively. Both code gen-

erators lag behind the ARM Compute on the edge case of the first layer, where the

sliding windows and convolutional kernels have dimensions of 3×3×3.

These results show that the RP approach is expressive enough to transform a sin-

gle hardware-agnostic convolution expression into two distinct low-level implemen-

tations and achieve a good performance on both. We will see in section 6.3.4.2 that

GEMM-based implementations on a Mali GPU require further diversification of input

preprocessing depending on the layer configuration; the same set of RPs produces both

implementations.

The achieved results are especially promising considering that the ARM Compute

kernels were written manually by experts. As an indirect indication of the complex-

ity of a well-optimised GEMM-based convolution, we look at the number of code

lines in the ARM Compute OpenCL kernels. Across the input preprocessing, weight

preprocessing, im2col and GEMM stages, the respective OpenCL kernels use at least

158 Chapter 6. Towards Guided Rewriting

711 lines of code which depend on upwards of 126 code lines implementing C pre-

processor macros. This includes the macros that adapt the implementation to a given

platform, which corresponds to the rewrite point and parallelism mapping functionali-

ties in LIFT. The size of the ARM Compute implementation of convolution showcases

the complexity of the problem successfully handled by RPs.

Memory consumption of LIFT programs is on par with those of the ARM Compute

irrespectively of the convolution method. LIFT-Direct requires 11% more memory

than ARM Compute-Direct on average since it relies on local buffers to store inter-

mediate results across the two reduction stages of convolution. The amount of extra

padding performed by LIFT-GEMM is so small that the memory consumption is not

impacted. TVM uses more memory than the direct implementations of LIFT and ARM

Compute since it depends on the im2col operation. Its Spatial Tiling approach allows

it to use less memory than the GEMM-based implementations.

The difference of 3.6−4× in average memory consumption between the direct and

GEMM methods makes the former suitable for low memory budgets, and the latter –

for high-bandwidth requirements. A code generator capable of producing both imple-

mentations can adapt to changing priorities with less effort than a handwritten kernel

library.

We now focus on the breakdown of runtime across different stages of convolution

implementations (preprocessing, GEMM, postprocessing) in the RP-based approach

and ARM Compute and identify further optimisation opportunities.

6.3.3 Runtime Breakdown

The high-level expression in Listing 6.4 might apply at most six kernel fission RPs.

This means the generated convolution is broken down into at most six OpenCL kernels:

preprocessing of inputs (two kernels) and weights (one kernel), the main computation

(GEMM or direct convolution) and postprocessing of inputs (two kernels). However,

the best candidates use no more than four kernels at once since only one type of pre

and postprocessing is beneficial for a given convolution method.

Input preprocessing includes the padding required by the layer configuration, extra

padding to enable more tiling opportunities, reshaping and im2col. Postprocessing in-

cludes depadding the outputs. The RPs introduce two types of extra padding: before

and after sliding. Padding before sliding is performed in memory along the right and

bottom edges of the input image: it is beneficial for direct convolution, where mate-

6.3. Evaluation 159

0

10

20

30

40

50

R
u

n
ti

m
e

[m
s]

Lift-GEMM Lift-prep Lift-post

ARM-CL-GEMM ARM-CL-prep

L0 L2 L24, L26

L28

L5 L7 L10 L12, L14 L17 L19, L21 AVG

19

5

16

3

0

50

100

150

200

250

300

350

ALL CONV

252

58

208

35

(a)

0

20

40

60

80

100

R
u

n
ti

m
e

[m
s]

VGG layer

Lift-Direct Lift-prep Lift-post ARM-CL-Direct

L0 L2 L24, L26L5 L7 L10 L12, L14 L17 L19, L21 AVG

43
49

0

200

400

600

800

ALL CONV

532
678

(b)

Figure 6.4: Breakdown of runtime across OpenCL kernels in the best-performing LIFT

and ARM Compute implementations of GEMM-based (a) and direct (b) convolution.

The preprocessing stage includes input reshaping, padding and im2col and does not

include weight reshaping. The postprocessing stage includes depadding.

rialising data before sliding is preferable to keep memory consumption low. Padding

after sliding is performed in memory at the corner of the image by adding extra empty

sliding windows. Corner padding is beneficial with the GEMM-based method since

it already requires materialising data after sliding for im2col. Padding at the corner

instead of along the edges uses less extra memory, but it is only possible after the 2D

sliding is performed and the two spatial dimensions can be fused. Each of the two

types of padding requires a corresponding depadding OpenCL kernel, which removes

the extra values from the output after the main computation is finished.

Figure 6.4 shows how much runtime LIFT and ARM Compute spend in each stage.

In GEMM-based convolution (a), LIFT spends 19% of runtime across the entire VGG-

16 convolution on preprocessing (padding, im2col, reshaping), 80% on GEMM and

1% on postprocessing (depadding). In direct convolution, the main computation takes

96% of runtime. On average, LIFT-GEMM takes 18% more time than ARM Compute-

GEMM, while LIFT pre and postprocessing stages take 72% more time than ARM

Compute preprocessing. LIFT preprocessing in GEMM leaves room for improvement

since the main optimisational focus of this work has been on GEMM and not on the

pre- and postprocessing kernels.

ARM Compute does not perform extra padding and depadding: splitting data in

160 Chapter 6. Towards Guided Rewriting

uneven tiles is achieved by checking the thread index and returning early when the

buffer bound is reached. LIFT’s type system requires splitting data in even chunks,

but the IR could be extended to allow uneven tiling. Extra padding for optimisation

purposes is not expensive in LIFT since convolutional layers already require padding as

part of the layer definition, and branching overheads are already incurred. In GEMM,

LIFT spends 1.7% of runtime on depadding across the entire VGG-16 convolution and

uses 0.01% extra memory.

Both LIFT and ARM Compute reshape weights in separate OpenCL kernels as part

of the preprocessing stage. Reshaping optimises the data access pattern in the GEMM

kernel for coalescing, vectorisation and cache locality. LIFT’s weight preprocessing

stage adds 9% to the total convolution runtime of VGG-16. Weight optimisation can

be performed offline in advance of the inference. Since the overhead is amortised

across multiple inference runs, weight preprocessing is not included in Figures 6.3

and 6.4.

Next, we look at how the proposed set of RPs supports a range of efficient design

choices covering two convolution algorithms and all convolutional layer configurations

of the VGG network.

6.3.4 Design Choices

Despite the radical difference in memory access patterns and memory requirements of

direct and GEMM-based convolution methods, LIFT IR represents both similarly. The

stencil memory access pattern is at the core of both methods: it drives the im2col op-

eration in the GEMM-based method and matrix multiplications in direct convolution.

Thanks to the concise expression of the stencil pattern in LIFT– the slideND primi-

tive [Hag18] – inserting a copy operation after aslideND is enough to transform direct

convolution into im2col and GEMM. The RP-based approach expresses this choice

through the kernelFission RP, which optionally moves the slideND in a separate

OpenCL kernel and commits the stencil pattern to memory using materialise.

Of the many RP application sequences made possible by the RP arrangement in

Listing 6.4, Tables 6.2 and 6.3 present three that achieve high performance across

two convolution methods. It is worth highlighting that all three designs are expressed

purely through the structural parameter values, while the RP arrangement in the expres-

sion is the same for all three. In other words, the user sees only one high-level program,

while the compiler generates the three designs automatically. Although these parame-

6.3. Evaluation 161

ter values are set manually in this work, the process uses the same mechanism which

performs automatic exploration of parallel mappings and tuning values. The compiler

is capable of finding these implementations automatically.

We now look at the best-performing implementations of direct and GEMM-based

convolution. Direct convolution is produced by applying the input preprocessing

kernelFission RP before slideND2 in Table 6.2. GEMM-based convolution is pro-

duced by applying kernelFission after slideND2 in Table 6.3. Depending on the

layer configuration, one of two GEMM implementations is produced: with or without

input reshaping. We now look at how rewriting differs across the convolution methods.

6.3.4.1 Direct Convolution

A more complex operation than GEMM, direct convolution requires more effort to

optimise; hence, the rewriting sequence is longer in Table 6.2. While the two methods

still use the same set of RPs, direct convolution requires more levels of tiling to enable

more complex parallel mappings. This is achieved by nesting the same RPs several

times. In total, the rewriting sequence in Table 6.2 creates 33 tuning parameters.

Input Pre and Postprocessing To enable a tile size of 64 in the first abTile in-

stance (RP #10 in Table 6.2), padExtra2D #1 pads the 28× 28 input with extra four

elements along the bottom edge. Padding is performed together with input reshaping

in a separate OpenCL kernel created by kernelFission #2. Reshaping is achieved

using the optimiseDataLayout RP #3: the input is split into 8 tiles of 48 subtiles of 4

elements, where the innermost dimension is left as-is for vectorisation. The other two

dimensions are swapped to achieve coalesced access during prefetching performed by

materialise #20. The transformed input view is materialised in global memory; the

copy operation is vectorisable thanks to splitJoinND #5.

The postprocessing stage is performed by a separate OpenCL kernel created by

padExtra2D to remove the extra #4 elements.

Weight Preprocessing Weights are reshaped similarly to inputs: optimiseDataLayout

#7 leaves 4 elements in the innermost dimension for access vectorisation; the next two

dimensions are swapped for coalescing. materialise inserts the copy operation and

splitJoinND tiles it.

162 Chapter 6. Towards Guided Rewriting

Table 6.2: Rewrite point application sequence producing high-performance direct con-

volution on VGG-16 layers 19 and 21. Arrows denote the RPs inserted by other RPs.

The RPs that were not applied and the Join-Split RP are excluded for brevity. The “Line”

column refers to Listing 6.4. The row with slideND2 separates RPs into those applied

on the original input and those applied on the slided input.

⤷

⤷

⤷

⤷

⤷

⤷

⤷

⤷

⤷

⤷

⤷

⤷

⤷

⤷

⤷

Stencil Computation Inputs and weights are tiled three times in the spatial and out-

put channel dimensions, respectively. This is achieved through the abTile instances

#10, #12 and #19. The first two tiling levels create parallelisation opportunities. The

parallelisation pass maps work groups over 14 tiles of 64 windows in the OpenCL di-

mension 1, and 128 tiles of 4 output channels in the OpenCL dimension 0. The loop

interchange performed by interchangeMaps #11 allows mapping local threads over

input tiles, and work groups – over output channel tiles (Section 6.2.5.7 discusses this

mechanism).

The second abTile (#12) creates only one output channel tile; the newmap is then

parallelised across one work group in the OpenCL dimension 2. While no extra parallel

6.3. Evaluation 163

work is achieved, the addition ofmapWrg(2) “unlocks” the usage ofmapLcl(2) inside

the map nest, an extra parallelisation flexibility. Section 5.3.4.3 discusses why LIFT

IR requires all instances of mapLcl to be wrapped by a mapWrg of the same OpenCL

dimension.

Reduction is tiled twice using tileNestedMapReduce #13 and #17. This time,

the compiler is tiling the joint three dimensions of sliding windows, which are being

reduced. The first tiling level splits reduction in partial and final reductions, which

are parallelised independently across local threads. Intermediate results are exchanged

between threads via a shared buffer; the computation is synchronised using a barrier

inserted automatically as per Section 5.4. Since the reduce primitive cannot be par-

allelised, interchangeReduceND #14 sinks the reduce into its inner maps, which are

then parallelised.

The second level of reduction (#17) and the final abTile (#19) determine the num-

ber of prefetched elements. The final privatiseAccumulator (#24) keeps the in-

termediate results in private memory until they are further reduced and placed in the

shared memory.

6.3.4.2 GEMM-Based Convolution

At the cost of increased memory usage, im2col simplifies the example rewriting se-

quence to 18 RP instances, fewer levels of tiling and a more straightforward parallel

mapping without local synchronisation. Table 6.3 presents two GEMM-based convo-

lution rewriting sequences: with and without input reshaping (RPs #1 and #3). In total,

the rewriting sequence in Table 6.3 creates up to 26 tuning parameters.

Input Pre- and Postprocessing The im2col operation is created by materialising the

slided inputs in a separate OpenCL kernel inserted by kernelFission #2. Depending

on the layer configuration, input reshaping is also performed as follows. Rewrite point

optimiseDataLayout flattens the array of sliding windows and splits it into dimen-

sions A, B, C, D and E, where E is the innermost dimension. The sizes of D and E are

set to 1152 and 4, respectively; in VGG-16 layers 19 and 21, D and E cover one sliding

window of 4608 elements. This means that dimensions A, B and C span over different

sliding windows. Then, dimension D is transposed with outer dimensions twice: the

order of dimensions is now A, D, B, C and E.

The effect of reshaping is a coalesced memory access pattern and a vectorisation

opportunity. Dimensions D and E are traversed sequentially during reduction; dimen-

164 Chapter 6. Towards Guided Rewriting

sions A, B and C can be traversed in parallel. Thanks to the new data layout, the

threads in dimension C access elements that are close in memory, improving cache

line usage. Leaving dimension E innermost ensures that there are always tuples of four

consecutive elements to be fetched in the same vector.

The input preprocessing stage also includes corner padding, wherein 6 sliding win-

dows are added at the end of the array before reshaping. Extra elements allow splitting

data in chunks of 5 (RP #13). Together with depthwise tiling into chunks of 4 (RP #11)

and weight tiling into chunks of 4 (RP #13), the prefetching stage (RP #13) moves 5×4

inputs and 4× 4 weights into the private memory. With 64 float registers of the Mali

GPU, prefetching 36 elements leaves 28 registers for accumulators and for the other

threads (to increase compute core occupancy).

Weight Preprocessing Similarly to input preprocessing, weight reshaping moves

the sequentially traversed array dimensions apart. This spreads interdependent ele-

ments across memory so that independent elements are placed close to each other for

concurrent access.

The splitJoinND RP #5 tiles the weight preprocessing OpenCL kernel to create a

vectorisation opportunity; the extramaps are fused in the parallelisation pass to simplify

the search space.

Matrix Multiplication The AB-Tiling RP #10 splits the input into 158 tiles of 5 slid-

ing windows and weights into 128 tiles of 4 output channels. The global threads pro-

cess the tiles in the OpenCL dimensions 0 and 1. Each thread, therefore, produces

20 outputs and requires 20 registers for the reduction accumulators. The prefetching

buffer size is 36 elements, leaving 8 registers free.

Prefetching is performed by materialise instances #14 and #16 inserted by abTile

#13. splitJoinND instances #15 and #17 ensure that the vectorisation opportunities

left during reshaping (RPs #3, #7) are preserved. Due to reshaping, an innermost di-

mension of more than 4 elements would be detected as non-contiguous and therefore

non-vectorisable.

6.3.5 Rewrite Point Generalisability

Direct and GEMM convolution use cases provide several examples where the same

RPs are reused for different purposes. splitJoinND is used to create parallelisa-

tion and vectorisation opportunities for partial reduction by tileNestedMapReduce

6.3. Evaluation 165

Table 6.3: Rewrite Point application sequence producing high-performance GEMM-

based convolution on VGG-16 layers 19 and 21. The first and the third RPs (the blue

rows) are applied on all VGG-16 layers except for 0, 2, 5 and 7.

⤷

⤷

⤷

⤷

⤷

⤷

⤷

⤷

⤷

⤷

⤷

and view materialisation by materialise. The materialisation RP is inserted by the

kernelFission RP to ensure that the OpenCL kernel results are committed to mem-

ory, and by abTile to optionally move a tile into a faster memory. padExtraND is

applied on two-dimensional data and a one-dimensional slided view, achieving differ-

ent padding patterns with the same RP.

RPs are coarser-grained than rewrite rules in LIFT by design. Macro transfor-

mations truncate the search space to find high-performance implementations faster.

However, two aspects make RP generalisable. Firstly, RP patterns are defined on an

algorithm-centred IR; therefore, they are reusable across hardware platforms and ap-

plications. Secondly, macro transformations are achieved by composing multiple RPs

together.

Combining RPs is facilitated by strong typing, where RPs are designed to preserve

the type of the original expression. Instead of re-implementing the same transformation

repeatedly, each RP only implements one optimisation and inserts other RPs in the

transformed expression to rewrite it further. In this regard, RPs are similar to rewrite

166 Chapter 6. Towards Guided Rewriting

rules; however, RPs are more proactive in shaping subsequent transformations. Since

RP application is driven by structural parameters, this proactive approach does not

overconstrain rewriting.

6.3.6 Search Space

The search space created by RPs, parallelisation and tuning is large. The exact size is

non-trivial to estimate, considering that RP application alters the design choices across

all three stages.

The GEMM-based convolution solution provided in Table 6.3 contains up to 7

structural parameters with 1.05×107 combinations of values. Disregarding the paral-

lelisation constraints, the average number of 40maps per rewritten expression increases

the number of candidates to 1.04×1047. The 26 tuning parameters increase the num-

ber of candidates further to 1.53×1095, assuming the range of 32 values per parameter.

Overall, the high-level annotated convolution expression can insert up to 51 RPs with

up to 16 structural parameters and 59 tuning parameters.

As seen, the design space is large, calling for an efficient search strategy such

as an auto-tuner, evolutionary algorithm or a machine learning-based approach. The

goal of this chapter has been to demonstrate how to encode the design choices at a

very high level to create a search space with high-performance candidates. The best

candidates were generated by manually fixing the parameter values to demonstrate that

the RP-based approach can produce high-performance kernels. The parameter values

are informed by the exploration performed in the previous chapters. However, the

system supports the automatic optimisation of parameter values.

6.4 Summary

This chapter shows that a small set of RPs applied on a single high-level expression

can express a large design space with multiple good solutions. The search space in-

cludes two convolution methods and method-specific optimisations; structural and tun-

ing parameters support multiple convolutional layer configurations. The automatically

created OpenCL kernels produce pre and postprocessing stages when required.

The examples make a case for the generalisability of the suggested RP designs. The

same RPs are inserted manually or through other RPs to achieve different goals. The

convolution algorithm-specific manual choices are restricted to the specific placements

6.4. Summary 167

or dimensionalities of generic RPs.

The RPs are more coarse-grained than the traditional rewrite rules, but modularity

keeps their design simple. RPs inserting other RPs to transform the expression further

preserves the extensibility of the rewrite rule-based systems while creating a smaller

design space.

Although the parameters are chosen manually in the experiments, they are set

through the same mechanism as exploration: arithmetic constraints. Automatic ex-

ploration does present a challenge due to the size of the design space, and the next

step is to apply an intelligent search strategy. However, this work is a necessary step

towards automated exploration, since it demonstrates that high-performant candidates

are indeed supported by the proposed code generation technique.

Chapter 7

Conclusions

This thesis has proposed methods for addressing the programmability of parallel accel-

erators using a functional representation of programs. The thesis has advocated that ac-

celerator diversity necessitates performance-portable solutions to employ a multi-level

approach with universal Intermediate Representation and automated code transforma-

tion techniques. The combinatorial explosion problem in explorative code generation

was tackled using automatically generated constraints and loosely-defined heuristics.

This chapter provides a summary of the work presented in this thesis. Section 7.1

recapitulates the contributions of this work in the context of the GPU programmability

challenge. Section 7.2 provides a critical analysis of the contributions of this thesis.

Section 7.3 suggests avenues of future work based on the proposed techniques. Sec-

tion 7.4 concludes.

7.1 Summary of Contributions

This section summarises the contributions of the previous three chapters.

7.1.1 Functional IR for Auto-Tuning

Chapter 4 introduced two fully functional implementations of convolution: high-level

and platform-specific expressions written manually. This work showcased the expres-

siveness of a functional IR; it supports both the algorithm-centred representation and

low-level optimisations with fine-grained control over memory and scheduling. Fur-

thermore, the chapter described how strongly-typed functional patterns yield arith-

metic constraints on numeric tuning parameters. Automatic constraint generation ad-

169

170 Chapter 7. Conclusions

dresses the problem of combinatorial explosion of the tuning space by avoiding the

evaluation of invalid candidates.

The automated method has two advantages: it removes the need for the user to

enumerate the constraints manually and produces the constraints even when the tuning

parameters are not known in advance. The latter truly shines when combined with the

guided rewriting method proposed in Chapter 6, where tuning parameters are inserted

into an expression automatically using rewrite points. The tuning parameter positions

and their entailed constraints depend on the rewrite point parameters controlling the

structural transformations.

The chapter showed that constrained exploration makes the tuning space more

tractable. With the memory consumption further reduced through the improved mem-

ory allocation method, the chapter demonstrated performance on par or better than

a handwritten kernel library and a state-of-the-art code generator. The chapter also

showed that the Pareto front of the performance and memory consumption trade-off

can be explored to provide solutions based on the given latency and memory budgets.

7.1.2 Parallelism Mapping Through Constraint Satisfaction

Chapter 5 addressed the need for automatic parallelisation as a bridge between high-

level universal IR and a low-level parallel programming model. Specifically, the chap-

ter described a way to model the target parallel architecture with arithmetic constraints

and explore the space of valid parallel mappings. On the one hand, this approach ex-

plores fine-grained variations of each parallel mapping by focusing on loop-level paral-

lelism. This provides extensive design space coverage. On the other hand, search time

is not wasted on evaluating invalid candidates. The technique was shown to find high-

performant solutions before even one valid solution is found through unconstrained

random exploration.

Furthermore, Chapter 5 presented a synchronisation barrier insertion method. The

chapter demonstrated how a Memory Access Graph is constructed from a functional

IR to represent the control flow between memory accesses. The MAG was shown to

reveal data dependencies and help identify control flow paths that require synchroni-

sation. Compared to the original pattern matching-based barrier insertion method, the

proposed technique was shown to find more efficient barrier placements and prevent

more data races.

7.2. Critical Analysis 171

7.1.3 Guided Rewriting

Chapter 6 tackled algorithmic optimisations through a combination of explorable pa-

rameters and loosely-defined heuristics. The chapter showed that using the same IR to

represent both the application and optimisations leads to composability – rewrite points

may insert other rewrite points into the transformed expression to reuse their function-

ality. The chapter also showed that exposing macro design decisions as rewrite point

parameters achieves large design space coverage. This was demonstrated by producing

two convolution algorithms with algorithm-specific optimisation chains from the same

annotated expression. By defining rewrite points on a universal algorithmic IR, the

chapter presented a generic optimisation method not limited to domain- or platform-

specific transformations.

7.2 Critical Analysis

This section critically analyses several aspects of the proposed techniques, highlighting

the issues identified retrospectively.

7.2.1 Redundant Space Pruning

Early detection of invalid implementations reduces the search space considerably: Sec-

tion 5.5 shows that only 1 out of 49,000 parallel mappings is valid. Although high-

performance candidates are found quickly enough, search times could be reduced fur-

ther. Currently, extra time is spent evaluating design decisions which produce equiv-

alent programs or achieve the same performance. For example, consider a loop nest

iterating over a single multidimensional array, where tile sizes determine the number

of iterations in the corresponding loops. When only some of the loops are parallelised,

changing the tile sizes affects the memory access pattern, thread coarsening and com-

pute core saturation. When all loops are sequential, changing the tile sizes does not

affect the memory access pattern and performance. The tuning stage does not consider

the effect of the tuning parameter values and still evaluates all tile sizes of sequential

loops.

Exploration of the parallel mapping space also has redundancies that could be op-

timised. For example, OpenCL thread indexing is performed in three dimensions; the

first dimension enumerates threads in the same warp. While the other two indexing

dimensions can be mapped to different arrays and thus exploit more parallelism, the

172 Chapter 7. Conclusions

two dimensions are interchangeable. However, LIFT still explores their permutations

across the same sets of loops.

During algorithmic rewriting, some functional patterns cancel each other. Two

rewrite points might compose an even number of transpositions, which is semantically

equivalent to not transposing. Another example is splitting an array and flattening it

again. Although a trivial pass of the AST detects and simplifies these patterns, the

resulting simplified expression is still evaluated.

Avoiding redundant exploration could be achieved through uniqueness constraints.

In auto-tuning, the constraint inference mechanism could be reused to enumerate the

parameter value equivalences based on the AST. In parallelisation mapping, some

equivalences could be expressed as simple constraints; others require the constraint

solver to delegate partial evaluation of parallel mappings to the LIFT compiler as part

of constraint satisfaction.

Rewrite point application could be optimised automatically for a given program

by enumerating the equivalent transformations before exploration and pruning these

redundancies with constraints. While enumerating the equivalences across the en-

tire expression might be too expensive, many redundancies can be detected locally

by analysing the output of a single rewrite point, two nested rewrite points, and so on.

7.2.2 Synchronisability-Based Space Pruning

Synchronisability of the LIFT programs is determined by parallel mapping and tun-

ing parameter values. Section 5.3.6 discusses the example where a parallel mapping

might be synchronisable depending on the distribution of work among threads. The

current approach depends on the proposed barrier insertion technique implemented

as a compiler check to detect whether a kernel is synchronisable. Although this ap-

proach is still fully automated and finds solutions quickly enough through uniformly

random exploration. However, the compiler still evaluates all tuning combinations for

non-synchronisable parallel mappings. Furthermore, the compiler does not consider

that some parallel mappings require tuning parameters to satisfy extra constraints to

produce synchronisable kernels.

Parallel mapping search could be improved by performing the synchronisability

analysis during the parallelisation stage. The proposed barrier insertion method could

be extended to evaluate a parallel mapping with unresolved tuning parameters and de-

termine whether the mapping is (1) always, (2) never or (3) sometimes synchronisable.

7.2. Critical Analysis 173

In (1), tuning may proceed normally; in (2), tuning of the parallel mapping is aborted;

in (3), tuning proceeds with extra constraints limiting the parameters to those produc-

ing synchronisable kernels. This way, the parallelisation stage would feed the tuning

stage with additional constraints truncating the search further.

7.2.3 Multi-Stage Rewrite Point Application

The composability of the RP approach allows reusing RPs for macro-transformations.

The efficiency of RP nesting is predicated on the ability of RPs to control the placement

of the nested RPs in the transformed expression. Section 6.2.2 discusses how this

control is achieved through pattern-matching nested RPs in the input function. This

approach requires top-down rewriting order, where the outer RP is applied before the

nested RPs; the outer RP may move the nested RPs as required to ensure that the nested

RPs remain applicable on the transformed expression.

Sometimes, top-down rewriting order results in overly coarse-grained RPs, missing

opportunities to reuse finer-grained RPs. The design of some RPs would be simplified

if some of their nested RPs were applied first, creating a pattern for further transfor-

mation. This flexibility could be enabled by applying RPs in stages based on their

transformations. For example, the compiler could first apply all the RPs, which insert

extramaps into the expression. Then, the RPs interchanging or eliminatingmaps would

be applied. Automated analysis of all possible RP transformations could be used to

determine the order of application statically.

7.2.4 Rewrite Point DSL

The current RP implementation uses the full expressive power of Scala, the imple-

mentation language of the LIFT compiler. While Scala’s pattern-matching mechanism

is indispensable for RP application, a general-purpose programming language yields

verbose implementations. This presents an opportunity to improve the approach.

Although the proposed RP interface outlines the mechanism in brush strokes, the

work on Chapter 6 identified several common patterns in RP implementations warrant-

ing a rewrite point DSL. The pattern-matching mechanism of Scala could be used to

simplify matching the LIFT IR. Example “meta-patterns” include matching a pattern

on each LIFT function in a composition chain individually, which could be used to find

the first concrete function in a chain; matching a pattern on each LIFT function in a

nest of functional patterns, which could be used to find perfectly nestedmaps.

174 Chapter 7. Conclusions

Section 6.2.1 describes the decomposition of the matched expression, where the

components of the matched expression are exposed to the rewriting method for reuse

in the transformed expression. The current definition of expression components is

untyped: it includes both LIFT expressions, function declarations and LIFT types. For-

malising decomposition would simplify RP implementation and prevent defects.

7.3 Future Work

This section suggests directions for extending the work presented in this thesis.

Informed Search Although the proposed techniques truncate the search space, much

time is spent evaluating inefficient solutions. This thesis’ contributions could be com-

plemented with informed search methods to find high-performance implementations

faster.

The constraints mechanism could be reused to express heuristics for tuning, par-

allelisation and algorithmic optimisations. The heuristic rules could be derived from

static analysis of the AST to predict performance based on the design decisions. Sev-

eral properties of a functional IR could be used as a proxy for performance. The

numbers of fetched cache lines and cache misses could be calculated based on the

scheduling policy, distances between array accesses and cache specifications. The

amount of memory consumed in each address space could be derived from the LIFT

memory allocator; the candidates depending on slower memories could be penalised.

Functional patterns such as slide could be used to detect and avoid data duplication.

The suggested heuristics could be used both to truncate the space further based on hard

cut-offs and as objective functions to optimise.

Reinforcement Learning (RL) techniques [Sut18] could be applied to drive rewrit-

ing. The rewrite point approach is well-represented in the domain of RL. With the

compiler as the agent, RP applications as actions and the target hardware as the envi-

ronment, the compiler could be rewarded for the RP applications which improve per-

formance or memory consumption. Since the optimisations used in this thesis are not

application- or platform-specific, the RL agent could be reused across compilations,

with transfer learning used to improve sample efficiency. Alternatively, an evolution-

ary algorithm could be used to optimise the search.

7.4. Summary 175

Cross-Domain Optimisation The proposed techniques could be applied to other ap-

plications benefitting from parallel acceleration, such as computer vision and scientific

computing. Rewrite points could be used to implement domain-specific optimisations

such as quantisation and the Coppersmith-Winograd algorithm [Cop87]. Some of these

methods break the semantics of the input program. The LIFT type system could be ex-

tended to capture approximate types and quantify the loss of precision similarly to how

the type system has been extended to represent sparse matrices [Piz20]. The RP mech-

anism is decoupled from the type system, so the other domains would still benefit from

the guided rewriting approach.

Further extension of this work would be to provide DSLs based on the LIFT IR.

Raised level of abstraction would shift the burden of providing efficient RP annotations

from the user to the compiler engineer.

Distributed and Heterogenous Platforms Although the contributions of this thesis

were demonstrated on the example of GPU, the proposed techniques are not specific

to the platform. The LIFT compiler has been shown to generate efficient code across a

range of GPUs and CPUs [Ste15; Ste17], including using the OpenMP programming

model [Piz16]. The portability of the framework could be further extended using the

proposed techniques on distributed and heterogeneous platforms.

The MapReduce project [Dea08] has demonstrated the power of functional patterns

in a distributed setting. The guided rewriting method could optimise distributed pro-

grams with low manual effort. The kernel fission rewrite point could be used to split

the application into distributed kernels; LIFT host code generation could be extended

to support distributed address spaces. The hierarchical and memory-scoping paralleli-

sation constraints could be adapted to the heterogeneous programming model.

7.4 Summary

This chapter has summarised the contributions of this thesis, critically analysed the

limitations of the work presented and suggested avenues for future work. Overall, the

thesis attempted to bridge the gap between the two poles of optimisation: expertise-

based heuristics and mechanical exploration. With one providing custom-tailored so-

lutions based on experience and the other achieving great design space coverage, a

hybrid of the two is needed to tackle the challenges of parallel programming.

This work focused on tuning, parallelism mapping and algorithmic optimisations.

176 Chapter 7. Conclusions

The first two stages were tackled exploratively yet safely; the latter stage incorporated

user expertise into the code generation process while maintaining a high level of sepa-

ration of concern.

Acronyms

ALU Arithmetic Logic Unit. 1, 14, 15, 59

API Application Programming Interface. vii, 37, 38, 39, 43, 50, 52, 82

AS Address space. 32, 79, 80

ASIC Application-Specific Integrated Circuit. 1, 16, 38

AST Abstract Syntax Tree. 25, 28, 29, 31, 32, 35, 46, 71, 73, 74, 75, 78, 80, 89, 90,

95, 96, 97, 98, 106, 107, 108, 121, 126, 146, 172, 174

BLAS Basic Linear Algebra Subprograms. 11, 13, 40

CNN Convolutional Neural Network. 4, 6, 9, 10, 12, 13, 49, 53, 55, 58, 64, 90

CPU Central Processing Unit. 2, 11, 14, 16, 38, 39, 41, 45, 47, 49, 50, 54, 81, 112,

175

DAG Directed Acyclic Graph. 44, 73

DL Deep Learning. 40, 41, 44, 45

DRAM Dynamic random-access memory. 14, 15, 16, 17

DSL Domain-Specific Language. x, 46, 111, 173, 175

FLOP Floating-point operations. 113

FPGA Field Programmable Gate Arrays. 1, 16, 38

GEMM General Matrix Multiply. iii, 6, 7, 11, 12, 13, 35, 40, 54, 55, 59, 62, 82, 83,

84, 91, 112, 113, 123, 132, 133, 134, 135, 153, 154, 156, 157, 158, 159, 160,

161, 163, 164, 165, 166

177

178 Acronyms

GPGPU General-Purpose computing on Graphics Processing Units. 38

GPU Graphics Processing Unit. iii, iv, vii, viii, 1, 2, 4, 5, 6, 9, 11, 12, 13, 14, 15, 16,

17, 19, 26, 27, 30, 34, 36, 37, 38, 39, 40, 42, 44, 45, 46, 47, 48, 49, 50, 52, 53,

54, 55, 56, 58, 59, 60, 61, 64, 65, 67, 68, 71, 75, 80, 81, 82, 83, 84, 85, 86, 89,

90, 91, 93, 99, 105, 111, 112, 118, 134, 135, 139, 152, 154, 157, 164, 169, 175

ILP Integer Linear Program. 50

im2col Image To Column. 11, 12, 13, 59, 62, 112, 133, 134, 135, 156, 157, 158, 159,

160, 163

IR Intermediate Representation. iii, viii, x, 2, 3, 5, 6, 7, 9, 19, 21, 22, 25, 26, 27, 28,

29, 30, 32, 33, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54,

55, 56, 58, 61, 63, 69, 71, 72, 74, 86, 89, 90, 91, 105, 106, 108, 109, 117, 118,

121, 122, 123, 124, 125, 126, 142, 160, 163, 165, 169, 170, 171, 173, 174, 175

ISA Instruction Set Architecture. 39, 45

MAC Multiply-accumulate operation. 40, 113

MAG Memory Access Graph. 89, 105, 107, 108, 109, 117, 170

ML Machine Learning. 1, 19, 44, 46, 58

OOP Object-oriented programming. 125

RL Reinforcement Learning. 174

RP Rewrite point. 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133,

134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 146, 147, 148, 149, 150,

151, 152, 153, 154, 155, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 173,

174, 175

SIMD Single Instruction/Multiple Data. 14, 17, 38

SL Spatial Locality. 59, 60

SM Streaming Multiprocessor core. 1, 40

SRAM Static random-access memory. 14, 15, 17

Acronyms 179

TL Temporal Locality. 59, 60

UF User function. 26, 32, 78, 79, 80

Bibliography

[Ada19] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao

Li, Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian,

Frédo Durand, et al. “Learning to optimize halide with tree search and ran-

dom programs”. In: ACM Transactions on Graphics (TOG) 38.4 (2019),

pages 1–12. DOI: 10.1145/3306346.3322967 (cited on pages 4, 48, 49).

[Aik98] Alexander Aiken and David Gay. “Barrier inference”. In: Proceedings of

the 25th ACM SIGPLAN-SIGACT symposium on Principles of program-

ming languages. 1998, pages 342–354 (cited on page 47).

[Ald11] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, Massimiliano Meneghin,

and Massimo Torquati. “Accelerating code on multi-cores with fastflow”.

In: European Conference on Parallel Processing. Springer. 2011, pages 170–

181 (cited on pages 3, 44).

[And17] Andrew Anderson, Aravind Vasudevan, Cormac Keane, and David Gregg.

“Low-memory gemm-based convolution algorithms for deep neural net-

works”. In: arXiv preprint arXiv:1709.03395 (2017) (cited on page 41).

[Ans09] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan

Edelman, and Saman Amarasinghe. “Petabricks: A language and compiler

for algorithmic choice”. In: ACM Sigplan Notices 44.6 (2009), pages 38–

49 (cited on page 51).

[Ans14] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-

Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.

“Opentuner: An extensible framework for program autotuning”. In: Pro-

ceedings of the 23rd international conference on Parallel architectures and

compilation. 2014, pages 303–316 (cited on pages 4, 48, 81).

[Arm20] Arm. Arm Mali Bifrost and Valhall OpenCL Developer Guide: Developer

Guide. 4.1. Arm, 2020 (cited on page 60).

181

https://doi.org/10.1145/3306346.3322967

182 BIBLIOGRAPHY

[Arm21] Arm Ltd. Arm Compute Library. en. 2021. URL: https://developer.

arm.com/ip-products/processors/machine-learning/compute-

library (visited on 07/02/2021) (cited on pages 2, 40, 81, 91).

[Asa06] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James

Gebis, Parry Husbands, Kurt Keutzer, David A Patterson, William Lester

Plishker, John Shalf, Samuel Webb Williams, et al. “The landscape of

parallel computing research: A view from berkeley”. In: (2006) (cited on

page 1).

[Bag19] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo,

Abdurrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil,

and Saman Amarasinghe. “Tiramisu: A polyhedral compiler for express-

ing fast and portable code”. In: 2019 IEEE/ACM International Symposium

on Code Generation and Optimization (CGO). IEEE. 2019, pages 193–

205. DOI: 10.1109/CGO.2019.8661197 (cited on pages 3, 42, 90).

[Bag20] Riyadh Baghdadi and Albert Cohen. “Scalable Polyhedral Compilation,

Syntax vs. Semantics: 1–0 in the First Round”. In: (2020) (cited on page 42).

[Bar19] Paul Barham and Michael Isard. “Machine learning systems are stuck in a

rut”. In: Proceedings of the Workshop on Hot Topics in Operating Systems.

2019, pages 177–183 (cited on page 45).

[Bea19] Ulysse Beaugnon, Basile Clément, Nicolas Tollenaere, and Albert Cohen.

“On the Representation of Partially Specified Implementations and its Ap-

plication to the Optimization of Linear Algebra Kernels on GPU”. In:

arXiv preprint arXiv:1904.03383 (2019). DOI: 10.48550/arXiv.1904.

03383 (cited on page 49).

[Bey11] James C Beyer, Eric J Stotzer, Alistair Hart, and Bronis R de Supinski.

“OpenMP for accelerators”. In: OpenMP in the Petascale Era: 7th Inter-

national Workshop on OpenMP, IWOMP 2011, Chicago, IL, USA, June 13-

15, 2011. Proceedings 7. Springer. 2011, pages 108–121 (cited on page 39).

[Bon08] Uday Bondhugula, Albert Hartono, J Ramanujam, and P Sadayappan. “Pluto:

A practical and fully automatic polyhedral program optimization system”.

In: Proceedings of the ACM SIGPLAN 2008 Conference on Programming

Language Design and Implementation (PLDI 08), Tucson, AZ (June 2008).

Citeseer. 2008 (cited on page 42).

https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://doi.org/10.1109/CGO.2019.8661197
https://doi.org/10.48550/arXiv.1904.03383
https://doi.org/10.48550/arXiv.1904.03383

BIBLIOGRAPHY 183

[Bos11] Pradip Bose. “Power Wall”. In: Encyclopedia of Parallel Computing. Edited

by David Padua. Boston, MA: Springer US, 2011, pages 1593–1608. ISBN:

978-0-387-09766-4. DOI: 10.1007/978-0-387-09766-4_499. URL:

https://doi.org/10.1007/978- 0- 387- 09766- 4_499 (cited on

page 1).

[Bro16] Kevin J Brown, HyoukJoong Lee, Tiark Rompf, Arvind K Sujeeth, Christo-

pher De Sa, Christopher Aberger, and Kunle Olukotun. “Have abstrac-

tion and eat performance, too: Optimized heterogeneous computing with

parallel patterns”. In: Proceedings of the 2016 International Symposium

on Code Generation and Optimization. 2016, pages 194–205 (cited on

page 147).

[Buc04] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian,

Mike Houston, and Pat Hanrahan. “Brook for GPUs: stream computing on

graphics hardware”. In: ACM transactions on graphics (TOG) 23.3 (2004),

pages 777–786 (cited on page 38).

[Car99] William W Carlson, Jesse M Draper, David E Culler, Kathy Yelick, Eu-

gene Brooks, and Karen Warren. Introduction to UPC and language spec-

ification. Technical report. Technical Report CCS-TR-99-157, IDA Center

for Computing Sciences, 1999 (cited on page 39).

[Cat11] Bryan Catanzaro, Michael Garland, and Kurt Keutzer. “Copperhead: com-

piling an embedded data parallel language”. In: Proceedings of the 16th

ACM symposium on Principles and practice of parallel programming. 2011,

pages 47–56 (cited on page 39).

[Cha16] Li-Wen Chang, Izzat El Hajj, Christopher Rodrigues, Juan Gómez-Luna,

and Wen-mei Hwu. “Efficient kernel synthesis for performance portable

programming”. In: 2016 49th Annual IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO). IEEE. 2016, pages 1–13 (cited on

pages 4, 51, 123).

[Che14] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,

John Tran, Bryan Catanzaro, and Evan Shelhamer. “cudnn: Efficient prim-

itives for deep learning”. In: arXiv preprint arXiv:1410.0759 (2014) (cited

on pages 2, 40, 54).

https://doi.org/10.1007/978-0-387-09766-4_499
https://doi.org/10.1007/978-0-387-09766-4_499

184 BIBLIOGRAPHY

[Che15] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,

Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. “Mxnet: A

flexible and efficient machine learning library for heterogeneous distributed

systems”. In: arXiv preprint arXiv:1512.01274 (2015) (cited on page 82).

[Che18a] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,

Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al.

“{TVM}: An automated end-to-end optimizing compiler for deep learn-

ing”. In: 13th {USENIX} Symposium on Operating Systems Design and

Implementation ({OSDI} 18). 2018, pages 578–594. DOI: 10.5555/3291168.

3291211 (cited on pages 5, 50, 89, 91, 123).

[Che18b] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau,

Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. “Learning to op-

timize tensor programs”. In: Advances in Neural Information Processing

Systems 31 (2018) (cited on pages 4, 49).

[Che21] Lorenzo Chelini, Andi Drebes, Oleksandr Zinenko, Albert Cohen, Nico-

las Vasilache, Tobias Grosser, and Henk Corporaal. “Progressive raising

in multi-level ir”. In: 2021 IEEE/ACM International Symposium on Code

Generation and Optimization (CGO). IEEE. 2021, pages 15–26 (cited on

page 43).

[Chr11] Matthias Christen, Olaf Schenk, and Helmar Burkhart. “Patus: A code gen-

eration and autotuning framework for parallel iterative stencil computa-

tions on modern microarchitectures”. In: 2011 IEEE International Parallel

& Distributed Processing Symposium. IEEE. 2011, pages 676–687 (cited

on page 39).

[Col04] Murray Cole. “Bringing skeletons out of the closet: a pragmatic manifesto

for skeletal parallel programming”. In: Parallel computing 30.3 (2004),

pages 389–406 (cited on pages 3, 43).

[Col11] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,

and Pavel Kuksa. “Natural language processing (almost) from scratch”. In:

Journal of machine learning research 12.ARTICLE (2011), pages 2493–

2537 (cited on page 1).

https://doi.org/10.5555/3291168.3291211
https://doi.org/10.5555/3291168.3291211

BIBLIOGRAPHY 185

[Col14] Alexander Collins, Dominik Grewe, Vinod Grover, Sean Lee, and Adri-

ana Susnea. “NOVA: A functional language for data parallelism”. In: Pro-

ceedings of ACM SIGPLAN International Workshop on Libraries, Lan-

guages, and Compilers for Array Programming. 2014, pages 8–13 (cited

on page 47).

[Col89] Murray I Cole. Algorithmic skeletons: structured management of parallel

computation. Pitman London, 1989 (cited on pages 3, 43).

[Cop87] Don Coppersmith and Shmuel Winograd. “Matrix multiplication via arith-

metic progressions”. In: Proceedings of the nineteenth annual ACM sym-

posium on Theory of computing. 1987, pages 1–6 (cited on page 175).

[Cou71] Pierre-Jacques Courtois, Frans Heymans, and David Lorge Parnas. “Con-

current control with “readers” and “writers””. In: Communications of the

ACM 14.10 (1971), pages 667–668 (cited on page 104).

[Cyp18] Scott Cyphers, Arjun K Bansal, Anahita Bhiwandiwalla, Jayaram Bobba,

Matthew Brookhart, Avijit Chakraborty, Will Constable, Christian Con-

vey, Leona Cook, Omar Kanawi, et al. “Intel ngraph: An intermediate rep-

resentation, compiler, and executor for deep learning”. In: arXiv preprint

arXiv:1801.08058 (2018) (cited on pages 3, 45, 90).

[Dar05] Alain Darte and Robert Schreiber. “A linear-time algorithm for optimal

barrier placement”. In: Proceedings of the tenth ACM SIGPLAN sympo-

sium on Principles and Practice of Parallel Programming. 2005, pages 26–

35 (cited on page 47).

[Dav20] Shail Dave, Riyadh Baghdadi, Tony Nowatzki, Sasikanth Avancha, Aviral

Shrivastava, and Baoxin Li. “Hardware acceleration of sparse and irregu-

lar tensor computations of ml models: A survey and insights”. In: arXiv

preprint arXiv:2007.00864 (2020) (cited on page 42).

[De 19] Simon Garcia De Gonzalo, Sitao Huang, Juan Gómez-Luna, Simon Ham-

mond, Onur Mutlu, and Wen-mei Hwu. “Automatic generation of warp-

level primitives and atomic instructions for fast and portable parallel re-

duction on GPUs”. In: 2019 IEEE/ACM International Symposium on Code

Generation and Optimization (CGO). IEEE. 2019, pages 73–84 (cited on

pages 4, 51, 123).

186 BIBLIOGRAPHY

[Dea08] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data pro-

cessing on large clusters”. In: Communications of the ACM 51.1 (2008),

pages 107–113 (cited on pages 3, 43, 175).

[Den09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

“Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE con-

ference on computer vision and pattern recognition. Ieee. 2009, pages 248–

255 (cited on page 10).

[Dos14] Cicero Dos Santos and Maira Gatti. “Deep convolutional neural networks

for sentiment analysis of short texts”. In: Proceedings of COLING 2014,

the 25th international conference on computational linguistics: technical

papers. 2014, pages 69–78 (cited on page 1).

[Enm10] Johan Enmyren and Christoph W Kessler. “SkePU: a multi-backend skele-

ton programming library for multi-GPU systems”. In: Proceedings of the

fourth international workshop on High-level parallel programming and

applications. 2010, pages 5–14 (cited on page 44).

[Fra18] Franz Franchetti, Tze Meng Low, Doru Thom Popovici, Richard M Ve-

ras, Daniele G Spampinato, Jeremy R Johnson, Markus Püschel, James

C Hoe, and José MF Moura. “SPIRAL: Extreme performance portabil-

ity”. In: Proceedings of the IEEE 106.11 (2018), pages 1935–1968. DOI:

10.1109/JPROC.2018.2873289 (cited on pages 3, 49).

[Fuk80] Kunihiko Fukushima. “Neocognitron: A self-organizing neural network

model for a mechanism of pattern recognition unaffected by shift in po-

sition”. In: Biological cybernetics 36.4 (1980), pages 193–202 (cited on

page 53).

[Geo18] Evangelos Georganas, Sasikanth Avancha, Kunal Banerjee, Dhiraj Kalamkar,

Greg Henry, Hans Pabst, and Alexander Heinecke. “Anatomy of high-

performance deep learning convolutions on simd architectures”. In: SC18:

International Conference for High Performance Computing, Networking,

Storage and Analysis. IEEE. 2018, pages 830–841 (cited on page 41).

[Gib22] Perry Gibson and José Cano. “Transfer-Tuning: Reusing Auto-Schedules

for Efficient Tensor Program Code Generation”. In: 31st International Con-

ference on Parallel Architectures and Compilation Techniques (PACT).

Chicago. 2022 (cited on page 49).

https://doi.org/10.1109/JPROC.2018.2873289

BIBLIOGRAPHY 187

[Gin18] Philip Ginsbach, Toomas Remmelg, Michel Steuwer, Bruno Bodin, Christophe

Dubach, and Michael FP O’Boyle. “Automatic matching of legacy code

to heterogeneous APIs: An idiomatic approach”. In: Proceedings of the

Twenty-Third International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems. 2018, pages 139–153 (cited

on page 43).

[Hag18] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch, and

Christophe Dubach. “High performance stencil code generation with lift”.

In: Proceedings of the 2018 International Symposium on Code Generation

and Optimization. 2018, pages 100–112. DOI: 10.1145/3168824 (cited

on pages 19, 20, 92, 105, 122, 160).

[Hag20a] Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch,

and Michel Steuwer. “A language for describing optimization strategies”.

In: arXiv preprint arXiv:2002.02268 (2020) (cited on pages 51, 123).

[Hag20b] Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying Qin, Sergei

Gorlatch, and Michel Steuwer. “Achieving high-performance the func-

tional way: a functional pearl on expressing high-performance optimiza-

tions as rewrite strategies”. In: Proceedings of the ACM on Programming

Languages 4.ICFP (2020), pages 1–29 (cited on pages 51, 123).

[Hai16] Michael Haidl, Michel Steuwer, Tim Humernbrum, and Sergei Gorlatch.

“Multi-stage programming for GPUs in C++ using PACXX”. In: Proceed-

ings of the 9th Annual Workshop on General Purpose Processing using

Graphics Processing Unit. 2016, pages 32–41 (cited on page 39).

[Hen17] Troels Henriksen, Niels GW Serup, Martin Elsman, Fritz Henglein, and

Cosmin E Oancea. “Futhark: purely functional GPU-programming with

nested parallelism and in-place array updates”. In: Proceedings of the 38th

ACM SIGPLAN Conference on Programming Language Design and Im-

plementation. 2017, pages 556–571. DOI: 10.1145/3062341.3062354

(cited on pages 3, 46, 54, 90).

[Hor11] Amir H Hormati, Mehrzad Samadi, Mark Woh, Trevor Mudge, and Scott

Mahlke. “Sponge: portable stream programming on graphics engines”. In:

ACM SIGPLAN Notices 46.3 (2011), pages 381–392 (cited on page 50).

https://doi.org/10.1145/3168824
https://doi.org/10.1145/3062341.3062354

188 BIBLIOGRAPHY

[Hu18] Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-excitation networks”. In:

Proceedings of the IEEE conference on computer vision and pattern recog-

nition. 2018, pages 7132–7141. DOI: 10.1109/CVPR.2018.00745 (cited

on page 11).

[ISO20] ISO Central Secretary. Programming languages — C++. en. Standard

ISO/IEC 14882:2020. Geneva, CH: International Organization for Stan-

dardization, 2020. URL: https://www.iso.org/standard/79358.html

(cited on page 39).

[Jac19] Dejice Jacob, Phil Trinder, and Jeremy Singer. “Python programmers have

GPUs too: Automatic python loop parallelization with staged dependence

analysis”. In: Proceedings of the 15th ACM SIGPLAN International Sym-

posium on Dynamic Languages. 2019, pages 42–54 (cited on page 42).

[Jia14] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan

Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. “Caffe: Con-

volutional architecture for fast feature embedding”. In: Proceedings of the

22nd ACM international conference on Multimedia. 2014, pages 675–678

(cited on page 54).

[Kal14] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. “A convolu-

tional neural network for modelling sentences”. In: arXiv preprint arXiv:1404.2188

(2014) (cited on page 1).

[Kha19] Jehandad Khan, Paul Fultz, Artem Tamazov, Daniel Lowell, Chao Liu,

Michael Melesse, Murali Nandhimandalam, Kamil Nasyrov, Ilya Permi-

nov, Tejash Shah, et al. “MIOpen: An open source library for deep learning

primitives”. In: arXiv preprint arXiv:1910.00078 (2019) (cited on pages 2,

40).

[Khr15] SYCL subgroup Khronos OpenCL Working Group et al. SYCL Specifi-

cation, SYCL integrates OpenCL devices with modern C++.(May 2015).

2015 (cited on page 39).

[Khr22] The Khronos Group. OpenCL Reference Pages. en. 2022. URL: https:

//www.khronos.org/registry/OpenCL/sdk/2.2/docs/man/html/

(visited on 02/02/2022) (cited on pages 2, 9, 16, 17, 38, 98).

https://doi.org/10.1109/CVPR.2018.00745
https://www.iso.org/standard/79358.html
https://www.khronos.org/registry/OpenCL/sdk/2.2/docs/man/html/
https://www.khronos.org/registry/OpenCL/sdk/2.2/docs/man/html/

BIBLIOGRAPHY 189

[Kri12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classi-

fication with deep convolutional neural networks”. In: Advances in neural

information processing systems. 2012, pages 1097–1105 (cited on page 73).

[Lai18] Liangzhen Lai, Naveen Suda, and Vikas Chandra. “Not all ops are created

equal!” In: arXiv preprint arXiv:1801.04326 (2018). DOI: 10.48550/ar

Xiv.1801.04326 (cited on page 53).

[Lam15] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba: A llvm-

based python jit compiler”. In: Proceedings of the Second Workshop on

the LLVM Compiler Infrastructure in HPC. 2015, pages 1–6 (cited on

pages 39, 42).

[Lat19] Chris Lattner and Jacques Pienaar. MLIR primer: A compiler infrastruc-

ture for the end of Moore’s law. 2019. URL: https://storage.google

apis.com/pub-tools-public-publication-data/pdf/1c082b766d

8e14b54e36e37c9fc3ebbe8b4a72dd.pdf (visited on 11/06/2023) (cited

on page 44).

[Lat20] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,

Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and

Oleksandr Zinenko. “MLIR: A compiler infrastructure for the end of Moore’s

law”. In: arXiv preprint arXiv:2002.11054 (2020) (cited on page 43).

[Lea17] Chris Leary and Todd Wang. “XLA: TensorFlow, compiled”. In: Tensor-

Flow Dev Summit (2017) (cited on pages 3, 44).

[Li20] Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang,

Zhongzhi Luan, Lin Gan, Guangwen Yang, and Depei Qian. “The deep

learning compiler: A comprehensive survey”. In: IEEE Transactions on

Parallel and Distributed Systems 32.3 (2020), pages 708–727. DOI: 10.

1109/TPDS.2020.3030548 (cited on pages 45, 50, 112).

[McC12] Michael McCool, James Reinders, and Arch Robison. Structured parallel

programming: patterns for efficient computation. Elsevier, 2012 (cited on

page 37).

[McD13] Trevor L McDonell, Manuel MT Chakravarty, Gabriele Keller, and Ben

Lippmeier. “Optimising purely functional GPU programs”. In: ACM SIG-

PLAN Notices 48.9 (2013), pages 49–60. DOI: 10.1145/2500365.2500595

(cited on pages 3, 46, 54, 55, 90).

https://doi.org/10.48550/arXiv.1801.04326
https://doi.org/10.48550/arXiv.1801.04326
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/1c082b766d8e14b54e36e37c9fc3ebbe8b4a72dd.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/1c082b766d8e14b54e36e37c9fc3ebbe8b4a72dd.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/1c082b766d8e14b54e36e37c9fc3ebbe8b4a72dd.pdf
https://doi.org/10.1109/TPDS.2020.3030548
https://doi.org/10.1109/TPDS.2020.3030548
https://doi.org/10.1145/2500365.2500595

190 BIBLIOGRAPHY

[Men15] Charith Mendis, Jeffrey Bosboom, Kevin Wu, Shoaib Kamil, Jonathan

Ragan-Kelley, Sylvain Paris, Qin Zhao, and Saman Amarasinghe. “He-

lium: Lifting high-performance stencil kernels from stripped x86 binaries

to Halide DSL code”. In: Proceedings of the 36th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation. 2015,

pages 391–402 (cited on page 43).

[Mid86] Samuel Pratt Midkiff. Automatic generation of synchronization instruc-

tions for parallel processors. Technical report. Illinois Univ., Urbana (USA).

Center for Supercomputing Research and Development, 1986 (cited on

pages 47, 105).

[Mog20] Naums Mogers, Valentin Radu, Lu Li, Jack Turner, Michael O’Boyle, and

Christophe Dubach. “Automatic generation of specialized direct convolu-

tions for mobile GPUs”. In: Proceedings of the 13th Annual Workshop

on General Purpose Processing using Graphics Processing Unit. 2020,

pages 41–50. DOI: 10.1145/3366428.3380771 (cited on pages vi, 114).

[Mog22] Naums Mogers, Lu Li, Valentin Radu, and Christophe Dubach. “Mapping

parallelism in a functional IR through constraint satisfaction: a case study

on convolution for mobile GPUs”. In: Proceedings of the 31st ACM SIG-

PLAN International Conference on Compiler Construction. 2022, pages 218–

230 (cited on page vi).

[Mos23] William S Moses, Ivan R Ivanov, Jens Domke, Toshio Endo, Johannes

Doerfert, and Oleksandr Zinenko. “High-Performance GPU-to-CPU Tran-

spilation and Optimization via High-Level Parallel Constructs”. In: Pro-

ceedings of the 28th ACM SIGPLAN Annual Symposium on Principles

and Practice of Parallel Programming. 2023, pages 119–134 (cited on

page 47).

[Mul15] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. “Polymage:

Automatic optimization for image processing pipelines”. In: ACM SIGARCH

Computer Architecture News 43.1 (2015), pages 429–443 (cited on page 48).

[Mul16] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-

Kelley, and Kayvon Fatahalian. “Automatically scheduling halide image

processing pipelines”. In: ACM Transactions on Graphics (TOG) 35.4 (2016),

pages 1–11 (cited on page 49).

https://doi.org/10.1145/3366428.3380771

BIBLIOGRAPHY 191

[Mun11] Aaftab Munshi, Benedict Gaster, Timothy G Mattson, and Dan Ginsburg.

OpenCL programming guide. Pearson Education, 2011 (cited on page 18).

[New20] Julie L Newcomb, Andrew Adams, Steven Johnson, Rastislav Bodik, and

Shoaib Kamil. “Verifying and improving halide’s term rewriting system

with program synthesis”. In: Proceedings of the ACM on Programming

Languages 4.OOPSLA (2020), pages 1–28 (cited on page 49).

[Nic08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. “Scalable

parallel programming with cuda: Is cuda the parallel programming model

that application developers have been waiting for?” In: Queue 6.2 (2008),

pages 40–53 (cited on pages 2, 38).

[Nug15] Cedric Nugteren and Valeriu Codreanu. “CLTune: A generic auto-tuner for

OpenCL kernels”. In: 2015 IEEE 9th International Symposium on Embed-

ded Multicore/Many-core Systems-on-Chip. IEEE. 2015, pages 195–202

(cited on page 48).

[Nug18] Cedric Nugteren. “CLBlast: A tuned OpenCL BLAS library”. In: Proceed-

ings of the International Workshop on OpenCL. 2018, pages 1–10 (cited

on page 40).

[Num98] Robert W Numrich and John Reid. “Co-Array Fortran for parallel pro-

gramming”. In: ACM Sigplan Fortran Forum. Volume 17. 2. ACM New

York, NY, USA. 1998, pages 1–31 (cited on page 39).

[NVI] NVIDIA. GitHub - NVIDIA/cutlass: CUDA Templates for Linear Algebra

Subroutines — github.com. https://github.com/NVIDIA/cutlass

(cited on page 40).

[Nvi07] CUDA Nvidia. “Cublas library programming guide”. In: NVIDIA Corpo-

ration. edit 1 (2007), page 206 (cited on pages 2, 40).

[NVI18] NVIDIA. CUDA LLVM Compiler — developer.nvidia.com. https://dev

eloper.nvidia.com/cuda-llvm-compiler. 2018 (cited on page 39).

[NVI22] NVIDIA. NVIDIA TensorRT. Dec. 2022. URL: https://developer.

nvidia.com/tensorrt (cited on page 40).

[OBo02] Michael O’Boyle and Elena Stohr. “Compile time barrier synchronization

minimization”. In: IEEE Transactions on Parallel and Distributed Systems

13.6 (2002), pages 529–543 (cited on page 47).

https://github.com/NVIDIA/cutlass
https://developer.nvidia.com/cuda-llvm-compiler
https://developer.nvidia.com/cuda-llvm-compiler
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

192 BIBLIOGRAPHY

[Ope08] ARB OpenMP. “Openmp application program interface v3. 0”. In: OpenMP

Architecture Review Board (2008) (cited on page 39).

[Ope15] OpenACC. “OpenACC programming and best practices guide”. In: (2015)

(cited on page 39).

[Osa23] Muhammad Osama, Duane Merrill, Cris Cecka, Michael Garland, and

John D Owens. “Stream-K: Work-centric Parallel Decomposition for Dense

Matrix-Matrix Multiplication on the GPU”. In: arXiv preprint arXiv:2301.03598

(2023) (cited on page 40).

[Pet20] Ivan Petrov, Daiheng Gao, Nikolay Chervoniy, Kunlin Liu, Sugasa Marangonda,

Chris Umé, Jian Jiang, Luis RP, Sheng Zhang, Pingyu Wu, et al. “Deep-

facelab: A simple, flexible and extensible face swapping framework”. In:

arXiv preprint arXiv:2005.05535 (2020) (cited on page 45).

[Pho13] Phitchaya Mangpo Phothilimthana, Jason Ansel, Jonathan Ragan-Kelley,

and Saman Amarasinghe. “Portable performance on heterogeneous archi-

tectures”. In: ACM SIGARCH Computer Architecture News 41.1 (2013),

pages 431–444. DOI: 10.1145/2451116.2451162 (cited on pages 4, 48,

51, 123).

[Piz16] Federico Pizzuti. “Implementing an OpenMP backend for the Lift com-

piler”. 2016 (cited on page 175).

[Piz19] Federico Pizzuti, Michel Steuwer, and Christophe Dubach. “Position-dependent

arrays and their application for high performance code generation”. In:

Proceedings of the 8th ACM SIGPLAN International Workshop on Func-

tional High-Performance and Numerical Computing. 2019, pages 14–26

(cited on page 122).

[Piz20] Federico Pizzuti, Michel Steuwer, and Christophe Dubach. “Generating

fast sparse matrix vector multiplication from a high level generic func-

tional IR”. In: Proceedings of the 29th International Conference on Com-

piler Construction. 2020, pages 85–95 (cited on page 175).

[Piz22] Federico Pizzuti, Michel Steuwer, and Christophe Dubach. “Generating

Work Efficient Scan Implementations for GPUs the Functional Way”. In:

European Conference on Parallel Processing. Springer. 2022, pages 335–

349 (cited on page 19).

https://doi.org/10.1145/2451116.2451162

BIBLIOGRAPHY 193

[Pou08] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and John Cavazos.

“Iterative optimization in the polyhedral model: Part II, multidimensional

time”. In: ACM SIGPLAN Notices 43.6 (2008), pages 90–100. DOI: 10.

1145/1379022.1375594 (cited on page 42).

[Pre19] S Prema, Rupesh Nasre, R Jehadeesan, and BK Panigrahi. “A study on

popular auto-parallelization frameworks”. In: Concurrency and Computa-

tion: Practice and Experience 31.17 (2019), e5168 (cited on pages 3, 37,

42).

[Pru16] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. “Choco

solver documentation”. In: TASC, INRIA Rennes, LINA CNRS UMR 6241

(2016) (cited on pages 111, 156).

[Rag13] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,

Frédo Durand, and Saman Amarasinghe. “Halide: a language and compiler

for optimizing parallelism, locality, and recomputation in image process-

ing pipelines”. In: Acm Sigplan Notices 48.6 (2013), pages 519–530 (cited

on page 46).

[Ras18] Ari Rasch and Sergei Gorlatch. “ATF: A generic auto-tuning framework”.

In: Proceedings of the 27th International Symposium on High-Performance

Parallel and Distributed Computing. 2018, pages 3–4 (cited on pages 48,

81).

[Ras21] Ari Rasch, Richard Schulze, Michel Steuwer, and Sergei Gorlatch. “Effi-

cient auto-tuning of parallel programs with interdependent tuning param-

eters via auto-tuning framework (ATF)”. In: ACM Transactions on Archi-

tecture and Code Optimization (TACO) 18.1 (2021), pages 1–26 (cited on

page 48).

[Rei07] James Reinders. Intel threading building blocks: outfitting C++ for multi-

core processor parallelism. ” O’Reilly Media, Inc.”, 2007 (cited on page 39).

[Rem16] Toomas Remmelg, Thibaut Lutz, Michel Steuwer, and Christophe Dubach.

“Performance portable GPU code generation for matrix multiplication”.

In: Proceedings of the 9th Annual Workshop on General Purpose Process-

ing using Graphics Processing Unit. 2016, pages 22–31 (cited on page 41).

https://doi.org/10.1145/1379022.1375594
https://doi.org/10.1145/1379022.1375594

194 BIBLIOGRAPHY

[Roe18] Jared Roesch, Steven Lyubomirsky, Logan Weber, Josh Pollock, Marisa

Kirisame, Tianqi Chen, and Zachary Tatlock. “Relay: A new ir for machine

learning frameworks”. In: Proceedings of the 2nd ACM SIGPLAN interna-

tional workshop on machine learning and programming languages. 2018,

pages 58–68 (cited on pages 46, 51).

[Rot18] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer

Deng, Roman Dzhabarov, Nick Gibson, James Hegeman, Meghan Lele,

Roman Levenstein, Jack Montgomery, Bert Maher, Satish Nadathur, Jakob

Olesen, Jongsoo Park, Artem Rakhov, Misha Smelyanskiy, and Man Wang.

“Glow: Graph lowering compiler techniques for neural networks”. In: arXiv

preprint arXiv:1805.00907 (2018) (cited on pages 3, 45).

[Sér99] Jocelyn Sérot. “Explicit parallelism”. In: Research Directions in Paral-

lel Functional Programming. Springer, 1999, pages 379–396 (cited on

page 38).

[She12] Jie Shen, Jianbin Fang, Henk Sips, and Ana Lucia Varbanescu. “Perfor-

mance gaps between OpenMP and OpenCL for multi-core CPUs”. In:

2012 41st International Conference on Parallel Processing Workshops.

IEEE. 2012, pages 116–125 (cited on page 39).

[Shv10] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.

“The hadoop distributed file system”. In: 2010 IEEE 26th symposium on

mass storage systems and technologies (MSST). Ieee. 2010, pages 1–10

(cited on page 44).

[Sim14] Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-

works for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556

(2014). DOI: 10.48550/arXiv.1409.1556 (cited on pages 1, 13, 53, 82,

90, 113, 154).

[Sin11] Jeremy Singer, George Kovoor, Gavin Brown, and Mikel Luján. “Garbage

collection auto-tuning for java mapreduce on multi-cores”. In: ACM SIG-

PLAN Notices 46.11 (2011), pages 109–118 (cited on page 44).

[Sio18] Savvas Sioutas, Sander Stuijk, Henk Corporaal, Twan Basten, and Lou

Somers. “Loop transformations leveraging hardware prefetching”. In: Pro-

ceedings of the 2018 International Symposium on Code Generation and

Optimization. 2018, pages 254–264 (cited on page 49).

https://doi.org/10.48550/arXiv.1409.1556

BIBLIOGRAPHY 195

[Siu18] Kevin Siu, Dylan Malone Stuart, Mostafa Mahmoud, and Andreas Moshovos.

“Memory requirements for convolutional neural network hardware accel-

erators”. In: 2018 IEEE International Symposium on Workload Character-

ization (IISWC). IEEE. 2018, pages 111–121 (cited on page 144).

[Sor21] Tyler Sorensen, Lucas F Salvador, Harmit Raval, Hugues Evrard, John

Wickerson, Margaret Martonosi, and Alastair F Donaldson. “Specifying

and testing GPU workgroup progress models”. In: Proceedings of the ACM

on Programming Languages 5.OOPSLA (2021), pages 1–30 (cited on page 47).

[Sot19] Matthew Sotoudeh, Anand Venkat, Michael Anderson, Evangelos Geor-

ganas, Alexander Heinecke, and Jason Knight. “ISA mapper: a compute

and hardware agnostic deep learning compiler”. In: Proceedings of the

16th ACM International Conference on Computing Frontiers. 2019, pages 164–

173 (cited on pages 4, 45, 49).

[Ste11] Michel Steuwer, Philipp Kegel, and Sergei Gorlatch. “Skelcl-a portable

skeleton library for high-level gpu programming”. In: 2011 IEEE Interna-

tional Symposium on Parallel and Distributed Processing Workshops and

Phd Forum. IEEE. 2011, pages 1176–1182 (cited on pages 3, 44).

[Ste12] Robert Stewart and Jeremy Singer. “Comparing fork/join and MapRe-

duce”. In: Department of Computer Science, Heriot-Watt University (2012)

(cited on page 44).

[Ste15] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach.

“Generating performance portable code using rewrite rules: from high-

level functional expressions to high-performance OpenCL code”. In: ACM

SIGPLAN Notices 50.9 (2015), pages 205–217 (cited on pages 122, 124,

129, 175).

[Ste16] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. “Matrix mul-

tiplication beyond auto-tuning: rewrite-based GPU code generation”. In:

Proceedings of the International Conference on Compilers, Architectures

and Synthesis for Embedded Systems. 2016, pages 1–10. DOI: 10.1145/

2968455.2968521 (cited on pages 29, 90).

[Ste17] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. “Lift: a func-

tional data-parallel IR for high-performance GPU code generation”. In:

2017 IEEE/ACM International Symposium on Code Generation and Op-

https://doi.org/10.1145/2968455.2968521
https://doi.org/10.1145/2968455.2968521

196 BIBLIOGRAPHY

timization (CGO). IEEE. 2017, pages 74–85. DOI: 10.1109/CGO.2017.

7863730 (cited on pages 3, 19, 28, 30, 92, 175).

[Sto21] Larisa Stoltzfus, Brian Hamilton, Michel Steuwer, Lu Li, and Christophe

Dubach. “Code Generation for Room Acoustics Simulations with Com-

plex Boundary Conditions”. In: 2021 IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS). IEEE. 2021, pages 485–496 (cited

on pages 19, 26, 142).

[Sut05] Herb Sutter et al. “The free lunch is over: A fundamental turn toward con-

currency in software”. In: Dr. Dobb’s journal 30.3 (2005), pages 202–210

(cited on page 2).

[Sut18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-

duction. MIT press, 2018 (cited on page 174).

[Tho12] Krishnahari Thouti and SR Sathe. “Comparison of OpenMP & OpenCL

parallel processing technologies”. In: arXiv preprint arXiv:1211.2038 (2012)

(cited on page 39).

[Tru16] Leonard Truong, Rajkishore Barik, Ehsan Totoni, Hai Liu, Chick Markley,

Armando Fox, and Tatiana Shpeisman. “Latte: a language, compiler, and

runtime for elegant and efficient deep neural networks”. In: Proceedings of

the 37th ACM SIGPLAN Conference on Programming Language Design

and Implementation. 2016, pages 209–223 (cited on page 45).

[Tse95] Chau-Wen Tseng. “Compiler optimizations for eliminating barrier syn-

chronization”. In: ACM SIGPLAN Notices 30.8 (1995), pages 144–155

(cited on page 47).

[Udu09] Abhishek Udupa, R Govindarajan, and Matthew J Thazhuthaveetil. “Soft-

ware pipelined execution of stream programs on GPUs”. In: 2009 Inter-

national Symposium on Code Generation and Optimization. IEEE. 2009,

pages 200–209 (cited on page 50).

[Vas18] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,

Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew Adams,

and Albert Cohen. “Tensor comprehensions: Framework-agnostic high-

performance machine learning abstractions”. In: arXiv preprint arXiv:1802.04730

(2018). DOI: 10.48550/arXiv.1802.04730 (cited on pages 3, 42, 90).

https://doi.org/10.1109/CGO.2017.7863730
https://doi.org/10.1109/CGO.2017.7863730
https://doi.org/10.48550/arXiv.1802.04730

BIBLIOGRAPHY 197

[Ver13] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, Jose Ignacio Gomez,

Christian Tenllado, and Francky Catthoor. “Polyhedral parallel code gen-

eration for CUDA”. In: ACM Transactions on Architecture and Code Op-

timization (TACO) 9.4 (2013), pages 1–23. DOI: 10 . 1145 / 2400682 .

2400713 (cited on pages 3, 42).

[Wan14] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu,

Qing Wu, and Yajuan Wang. “Intel math kernel library”. In: High-Performance

Computing on the Intel® Xeon Phi™. Springer, 2014, pages 167–188

(cited on page 40).

[Wan18] Zheng Wang and Michael O’Boyle. “Machine learning in compiler opti-

mization”. In: Proceedings of the IEEE 106.11 (2018), pages 1879–1901

(cited on page 2).

[Wei17] Richard Wei, Lane Schwartz, and Vikram Adve. “DLVM: A modern com-

piler infrastructure for deep learning systems”. In: arXiv preprint arXiv:1711.03016

(2017) (cited on pages 3, 44).

[Wha01] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. “Automated Em-

pirical Optimization of Software and the ATLAS Project”. In: Parallel

Computing 27.1–2 (2001). Also available as University of Tennessee LA-

PACK Working Note #147, UT-CS-00-448, 2000, pages 3–35 (cited on

pages 2, 40).

[Whi12] Tom White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012

(cited on page 44).

[Wie12] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey.

“OpenACC—first experiences with real-world applications”. In: Euro-Par

2012 Parallel Processing: 18th International Conference, Euro-Par 2012,

Rhodes Island, Greece, August 27-31, 2012. Proceedings 18. Springer.

2012, pages 859–870 (cited on page 39).

[Win08] Winram, Laurence. The Informatics Forum. [Copyright: The Univesity of

Edinburgh]. 2008 (cited on page 10).

[Wu16] Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris Leary,

Jacques Pienaar, Bjarke Roune, Rob Springer, Xuetian Weng, and Robert

Hundt. “gpucc: an open-source GPGPU compiler”. In: Proceedings of

https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/2400682.2400713

198 BIBLIOGRAPHY

the 2016 International Symposium on Code Generation and Optimization.

2016, pages 105–116 (cited on page 39).

[Xia12] Zhang Xianyi, Wang Qian, and Zhang Yunquan. “Model-driven level 3

BLAS performance optimization on Loongson 3A processor”. In: 2012

IEEE 18th international conference on parallel and distributed systems.

IEEE. 2012, pages 684–691 (cited on pages 2, 40).

[Xin22] Jiarong Xing, Leyuan Wang, Shang Zhang, Jack Chen, Ang Chen, and

Yibo Zhu. “Bolt: Bridging the Gap between Auto-tuners and Hardware-

native Performance”. In: Proceedings of Machine Learning and Systems 4

(2022), pages 204–216 (cited on page 49).

[Ye22] Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze. “Sparse-

TIR: Composable Abstractions for Sparse Compilation in Deep Learning”.

In: arXiv preprint arXiv:2207.04606 (2022) (cited on page 51).

[Zer19] Tim Zerrell and Jeremy Bruestle. “Stripe: Tensor compilation via the nested

polyhedral model”. In: arXiv preprint arXiv:1903.06498 (2019). DOI: 10.

48550/arXiv.1903.06498 (cited on pages 42, 45, 46, 90).

[Zha18] Jiyuan Zhang, Franz Franchetti, and Tze Meng Low. “High performance

zero-memory overhead direct convolutions”. In: Proceedings of the 35th

International Conference on Machine Learning (2018) (cited on page 41).

[Zhe18] Lanmin Zheng and Tianqi Chen. “Optimizing deep learning workloads

on ARM GPU with TVM”. In: Proceedings of the 1st on Reproducible

Quality-Efficient Systems Tournament on Co-Designing Pareto-Efficient

Deep Learning. ACM New York, NY, USA, 2018, page 1. DOI: 10.1145/

3229762.3229764 (cited on pages 112, 156).

[Zhe20a] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu,

Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, et al.

“Ansor: Generating high-performance tensor programs for deep learning”.

In: 14th {USENIX} Symposium on Operating Systems Design and Imple-

mentation ({OSDI} 20). 2020, pages 863–879. DOI: 10.5555/3488766.

3488815 (cited on pages 4, 49, 89).

[Zhe20b] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng.

“Flextensor: An automatic schedule exploration and optimization frame-

work for tensor computation on heterogeneous system”. In: Proceedings

https://doi.org/10.48550/arXiv.1903.06498
https://doi.org/10.48550/arXiv.1903.06498
https://doi.org/10.1145/3229762.3229764
https://doi.org/10.1145/3229762.3229764
https://doi.org/10.5555/3488766.3488815
https://doi.org/10.5555/3488766.3488815

BIBLIOGRAPHY 199

of the Twenty-Fifth International Conference on Architectural Support for

Programming Languages and Operating Systems. 2020, pages 859–873

(cited on page 49).

	Introduction
	The Programmability Challenge
	Separation of Concern
	Automatic Code Generation

	Contributions
	Thesis Outline

	Background
	Convolution
	General Matrix Multiply
	Direct Convolution
	Memory Footprint

	gpu Programming
	gpu Architecture
	OpenCL Programming Model

	Lift
	The Lift Language
	The Lift Compiler

	Summary

	Related Work
	Explicitly Parallel Approaches to gpu Programming
	Low-Level Parallel api
	Kernel Libraries

	Implicit Parallelism for Code Generation
	Automatic Extraction of Parallelism
	Algorithmic Skeletons
	Computational Graphs
	Functional ir

	Parallel Code Optimisation
	Synchronisation Optimisation
	Auto-Tuning
	Constraint-Based Parallelisation
	User-Guided Optimisation

	Summary

	Functional IR for Auto-Tuning
	Introduction
	Optimising Convolution in Lift
	High-level Lift Expression
	Optimisations of Convolution on a gpu
	Low-level Optimisations in a Functional ir
	Low-Level Lift Expression
	Tuning Parameters

	Constraint Inference
	Constraint Types
	Constraint Solver
	Search Space Simplification

	Memory Allocation
	Intermediate Versus Output Buffers
	Intermediate Buffer Reuse

	Evaluation
	Experimental Methodology
	Comparison with ARM Compute Library
	Multi-objective Optimisation
	Analysis of the Best Point

	Summary

	Parallelism Mapping Through Constraint Satisfaction
	Introduction
	Overview and Motivation
	The Input Program
	Challenge of Mapping Parallelism

	Parallelisation Constraint Generation
	Map Scheduling Choices
	Constraint Generation
	Memory Scoping Constraints
	Hierarchical Parallelism Constraints
	Sequential Map Fusion Heuristic
	Synchronisability

	Synchronisation Barrier Insertion
	Memory Access Graph Construction
	Critical Path Detection

	Evaluation
	Experimental Methodology
	Results
	Parallelisation Analysis
	Exploration Efficiency
	Sequential Map Fusion
	Barrier Insertion

	Summary

	Towards Guided Rewriting
	Introduction
	Rewrite Points
	Definition
	Nesting
	Application
	High-level Convolution, Annotated
	Expressing Optimisations Through Rewriting Points
	Summary

	Evaluation
	Experimental Methodology
	Performance and Memory Consumption
	Runtime Breakdown
	Design Choices
	Rewrite Point Generalisability
	Search Space

	Summary

	Conclusions
	Summary of Contributions
	Functional ir for Auto-Tuning
	Parallelism Mapping Through Constraint Satisfaction
	Guided Rewriting

	Critical Analysis
	Redundant Space Pruning
	Synchronisability-Based Space Pruning
	Multi-Stage Rewrite Point Application
	Rewrite Point dsl

	Future Work
	Summary

