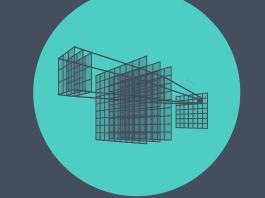
Towards Mapping Lift To Deep Neural Networks

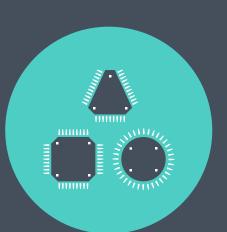
1 Context

- GEMM is ubiquitous in Deep Neural Networks (DNNs)
- It is the basis of both stencil and im2col convolution methods



- Hardware accelerators use N-dimensional computational units
- These units are exposed in ISAs via coarse-grained operators:

VVAdd32, VVAdd64, MVAdd64, MVAdd129 VVMu164, VVMu1128, MVMu164, MVMu1128



2 The problem

- How can we combine device-specific operators optimally?
- How can we make the optimisations performance portable?
- How can we automate and abstract the process from the user?

3 The Lift approach

3.1 Concept

- 1. Separate algorithm (WHAT) from implementation (HOW)
- 2. Detect and rewrite patterns

3.2 Functional data-parallel IR Language

Data types

Int, Arrays
Float8 / Float16 / Float32

Algorithmic patterns

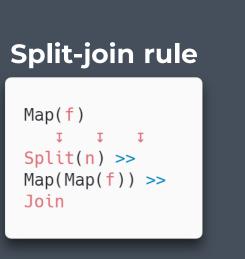
Map, Slide, Reduce, Zip Join, Split Address space operators
 toChip, toDram, toOutput

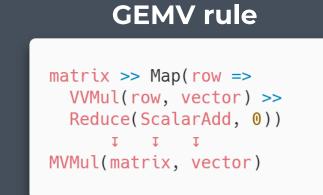
Arithmetic operators

ScalarAdd, VVAdd, MVAdd, MMAdd ScalarMul, VVMul, MVMul, MMMul VVRelu, VVTanh

3.3 Rewrite rules

- Generic and customisable
- 3 levels: DSL, algorithmic, hardware
- Extensible



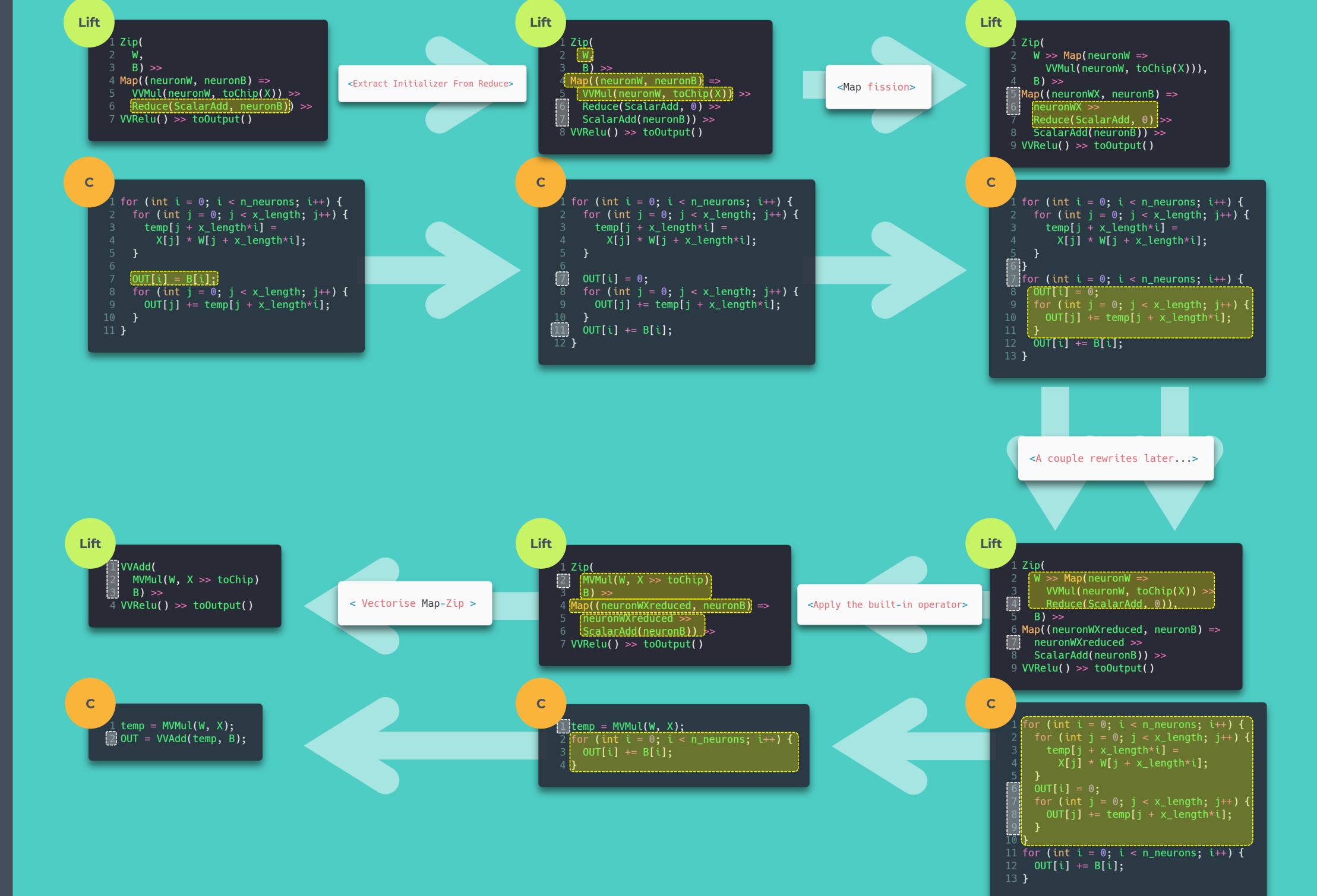


Naums Mogers

Aaron Smith, Dimitrios Vytiniotis Michel Steuwer, Christophe Dubach Ryota Tomioka

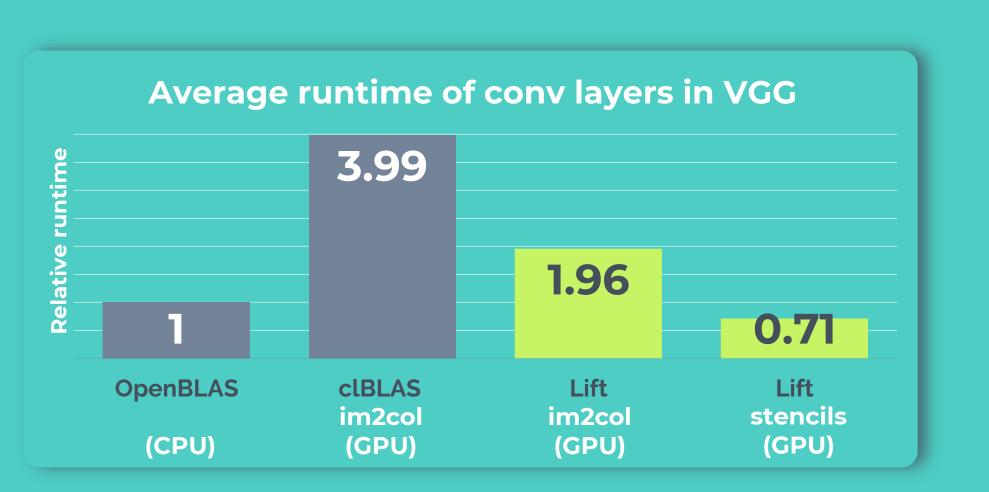
4 Example rewriting

A fully connected layer



5 Preliminary results

- Functional correctness on the BrainWave accelerator
- Performance measurements on Mali GPU



Microsoft®
Research

EPSRC Centre for Doctoral Training in Pervasive Parallelism

