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Parallel Architectures

Parallel architectures are hard to optimize for
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The Programmability Challenge

▣ Hierarchical execution and memory models

▣ Diverse and heterogeneous accelerator architectures

▣ Manual optimisation is too costly

▣ Heuristic optimisation strategies are over-constrained

▣ Automatic optimisation suffers from the search space 
explosion
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Current Approaches

▣ Kernel libraries
□ Costly to maintain and extend

▣ User-provided schedules (Halide) and 
design choices (PetaBricks, Tangram)
□ Burden on the user

▣ Polyhedral compilation (Tensor Comprehensions)
□ Limited to affine loops

▣ Functional rewriting (Futhark, Accelerate, Lift, RISE)
□ Dependence on heuristics
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Chapter 4:
Functional IR for Auto-Tuning

▣ Shows that a functional IR can represent low-level 
optimisations in the context of convolution
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Chapter 4:
Functional IR for Auto-Tuning

▣ Shows that a functional IR can in the context of 
convolution

▣ Describes an auto-tuning approach which 
leverages strongly typed functional patterns
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Results: Throughput

▣ Lift kernels are: 

□ Always faster than direct convolution in ARM-C
(x10 on average)

□ In some cases, on par or better than GEMM in ARM-C
(x0.7 on average)
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Results: Memory Consumption

▣ Memory consumption of Lift kernels is: 

□ On par with direct convolution in ARM-C
(x1.1 on average)

□ Always better than GEMM in ARM-C
(x3.6 on average)
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Results: Multi-Objective Optimisation

▣ Shifting priorities:
□ Low memory footprint vs throughput/latency

▣ Search space exploration for multi-objective optimization
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Chapter 5:
Parallelism Mapping Through Constraint 
Satisfaction
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CC’22 reviewer

I found the approach proposed by the author 
extremely convincing and fairly natural (to the point 
I’m almost surprised it wasn’t proposed earlier).



Chapter 5:
Parallelism Mapping Through Constraint 
Satisfaction

▣ Functional patterns
□ …expose parallelism
□ …express parallel restrictions succinctly
□ …aid dependency analysis for synchronization

▣ Chapter 5:
□ Expresses the GPU parallel programming model as 

arithmetic constraints on functional patterns

□ Uses a constraint solver to explore parallel mappings

□ Describes a functional IR-based barrier insertion 
method
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Results: Performance & Memory

▣ Stencil performance on par with ARM-CL GEMM and 0.86x of TVM’s

▣ 3.6x less memory on average than ARM-CL GEMM

▣ 2.7x less memory on average than TVM

VGG-16 on Mali-G72 GPU
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Results: Exploration Efficiency

▣ Peak performance after 95 minutes

▣ Peaks before the random approach produces even 1 result (a bad one)
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Chapter 6:
Towards Guided Rewriting

▣ Expressing design choices directly in a functional IR:
□ Decouples optimisation from code generation

□ Truncates the search to valid implementations

□ Helps the user drive rewriting loosely through 
composable optimisations

▣ Chapter 6:
□ Defines eleven rewrite points expressing a range of 

low-level optimisations

□ Shows how two convolution algorithms are produced 
from one expression 19
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Results: Performance & Memory

▣ Using three Lift-generated kernels:
□ Stencil performance on par with ARM-CL and TVM
□ Lift-GEMM  outperforms TVM and 0.77x of ARM-CL-GEMM
□ Lift-GEMM uses 33% more memory than TVM on average

VGG-16 on Mali-G72 GPU
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Auto-Tuning



Convolution: state of the art

▣ Express as General Matrix Multiplication (GEMM) using 
im2col

▣ High-performance libraries provide fast solutions on most 
devices
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Image source: Loukadakis et al (2018)

▣ im2col increases memory consumption
□ This is a problem for resource-constrained platforms
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Constraints In Convolution

▣ Tuning parameter constraints depend on the 
applied rewrites

▣ Too many possible constraints to enumerate

□ Tile size has to be a factor of spatial input size
□ Vector length has to be a factor of a window size
□ Buffer size must not exceed device limit
□ …etc
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Experimental Setup

▣ Benchmark: 
□ VGG-16

▣ OpenCL kernel generation: 
□ 1000 random candidates per layer

▣ Comparison: 
□ Autotuned ARM Compute Library kernels

▣ Platform:
□ ARM Mali-G72 (12 cores) mobile GPU 

with Kirin 970 SoC
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Parallelism Mapping



Parallelization Is Hard
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Transposed!



Parallelization Is Hard
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Parallelization Is Hard
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Different threads



Parallelization Is Hard
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Different thread blocks



Parallelization Is Hard
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Parallelization Is Hard
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Same indices



Parallelization: 
Scheduling Parameters
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mapParamA

mapParamB

▣ Associate a parameter with each map

▣ Encode scheduling choices as integers

▣ Model parallelization restrictions as integer constraints

mapParamC mapParamD



Parallelization: 
Encoding of Choices
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Constraint: 
Private Memory Scope
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IF: accesses private memory
THEN: cannot be parallel



Constraint: 
Private Memory Scope
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IF: accesses private memory
THEN: cannot be parallel



Constraint: 
Private Memory Scope
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Constraint: 
Shared Memory Scope
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mapC is local or sequential mapA is a mapWrg



Constraint: 
Shared Memory Scope
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Constraint: 
Shared Memory Scope
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Constraint: 
Hierarchical Parallelism
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mapA is not parallel mapA and mapB are not parallelized in the same way



Constraint: 
Hierarchical Parallelism

45

+10 more hierarchical parallelism constraints



Constraint Satisfaction
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Constraint Satisfaction
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Heuristics
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Guided Rewriting



53Rewrite points expanded



Guided Rewriting: Tiling
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▣ When two nested ND-maps iterate over different 
buffers, tiles can be prefetched and reused

Prefetching

Reusage

Tiling
Memory access 

pattern optimization



Guided Rewriting: Tiling
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▣ When two nested ND-maps iterate over different 
buffers, tiles can be prefetched and reused

Rewrite params:
whether to prefetch 

and in which memory

Tuning params:
ND tile sizes

Rewrite params:
whether to transform tile 
data layout for coalescing
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