
EPSRC Centre for Doctoral Training in Pervasive Parallelism

Guided Rewriting and Constraint Satisfaction for Parallel GPU Code Generation

May 9th, 2023

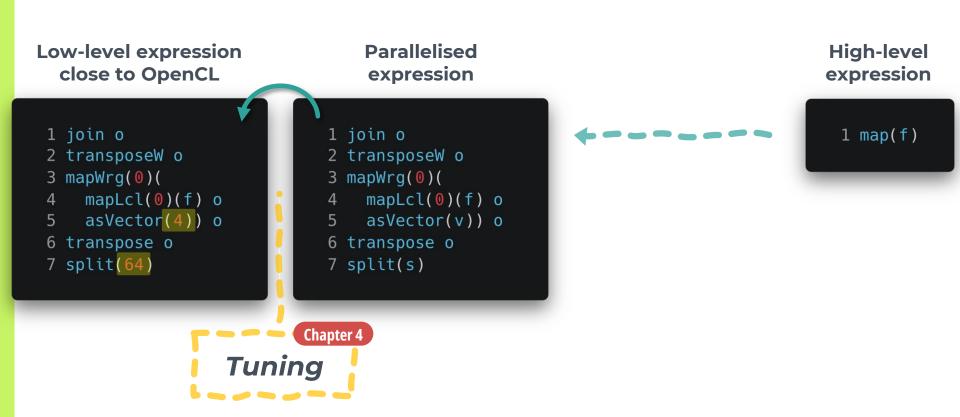
CARM Parallel Architectures ©NVIDIA Parallel architectures are hard to optimize for **GPU device ©Xilinx** ?? **Global memory** Work group (core) (x, y, z) Work group (core) (x, y, z) ?? Local (shared) mem Local (shared) mem HOST Thread Thread Thread Thread Thread Thread Thread Thread Private **Private Private** Private **Private Private Private Private** mem mem mem mem mem mem mem mem 27 2 77

The Programmability Challenge

Hierarchical execution and memory models

- Diverse and heterogeneous accelerator architectures
- Manual optimisation is too costly
- Heuristic optimisation strategies are over-constrained
- Automatic optimisation suffers from the search space explosion

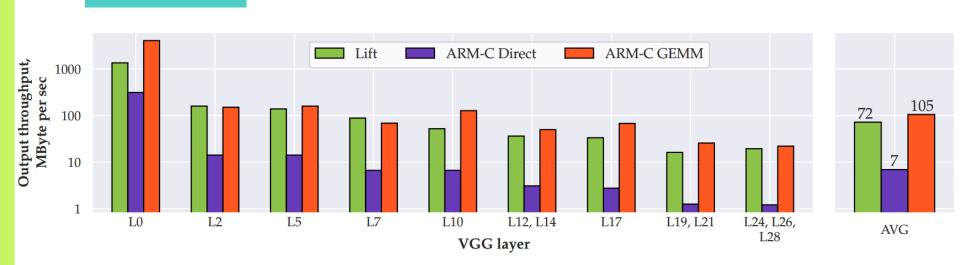
Current Approaches


Kernel libraries

- Costly to maintain and extend
- User-provided schedules (Halide) and design choices (PetaBricks, Tangram)
 - Burden on the user
- Polyhedral compilation (Tensor Comprehensions)
 - Limited to affine loops
- Functional rewriting (Futhark, Accelerate, Lift, RISE)
 Dependence on heuristics

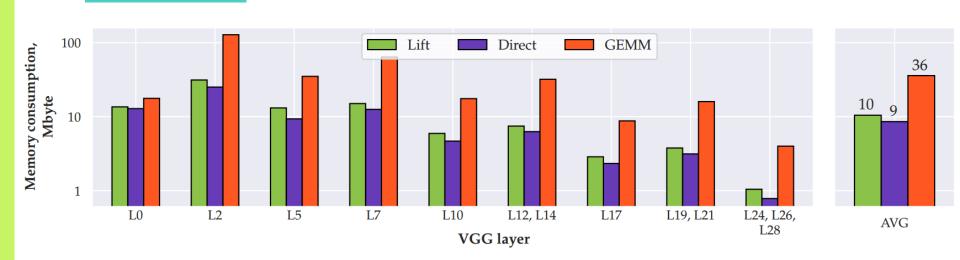
Chapter 4: Functional IR for Auto-Tuning

Shows that a functional IR can represent low-level optimisations in the context of convolution


1	def partialConv(kernelsWeights : [[[[float]inputChannels]kernelWidth]kernelHeight]numKernels,
2	paddedInput : [[[float]inputChannels]paddedInputWidth]paddedInputHeight,
3	kernelStride : (int, int))
4	: [[[[[float]]]windowSize/\omega]o]nWindowsInTile/o]k]numKernels/k]nTilesInInput = {
5	<pre>val tiledInput4D = join(slide2D(θ, tilingStride, paddedInput))</pre>
6	<pre>val tiledSlidedInput5D = map(join(slide2D((kernelHeight, kernelWidth), kernelStride)), tiledInput4D)</pre>
7	val windowSize = inputChannels * kernelWidth * kernelHeight
8	def coalesceChunkVectorizeWindow(window : [[[float]inputChannels]kernelWidth]kernelHeight])
9	$[[float_v]_{\omega}]_{windowSize/\omega} = \{$ Tiling
10	<pre>val flatWindow1D = join(join(window))</pre>
11	val flatCoalescedWindow1D = reorder(striddenIndex(windowSize/ω), flatWindow1D)
12	val flatCoalescedChunkedWindow1D = $split(\omega, flatCoalescedWindow1D)$ Coalescing
13	<pre>asVector(v, flatCoalescedChunkedWindow1D) }</pre>
14	val tiledSlidedCoalescedChunkedVectorizedInput4D = map(tile4D -> split(σ , map Vectorization
15	coalescechunkvectorizewindow(windowsb), tile4b)), tiledslidedinputsb)
16	val groupedCoalescedChunkedVectorizedKernelsWeights4D = split(κ, map(singleKernervens
17	coalesceChunkVectorizeWindow(singleKernelWeights), kernelsWeights))
18	indpirig(r), inputrized (
19	<pre>mapWrg(0, kernelsGroupWeights3D -> transpose(</pre>
20	<pre>mapLcl(1, inputWindows2D -> transpose(Kernel grouping Kernel grouping </pre>
21	maplei (0, (Input windowsendink D), keinerson oupen unkzb) >
22	<pre>mapSeq(singleKernelReducedChunk -> toGlobal(singleKernelReducedChune)</pre>
23	join (Thread coarsening
24	reducesed
25	<pre>init = mapSeq(toPrivate(id(Value(0, [float]_K)))),</pre>
26	f = (acc, (inputsValue, kernelsGroupValue1D)) -> (Memory optimization
27	Tet (Inputsvaluer Ivate ->
28	<pre>mapSeq((accValue, singleKernelValue) -></pre>
29	<pre>mapSeq((inputValuePrivate) -></pre>
30	accValue + vectorize(v, dot(inputValuePrivate, singleKernelValue)),
31	inputsValuePrivate,
32 33	<pre>zip(acc, kernelsGroupValue1D),</pre>
33 34	<pre>mapSeq(toPrivate(vectorize(v, id(inputValue))))), zip(transpose(inputWindowsChunk1D), transpose(kernelsGroupChunk2D))))),</pre>
35	zip (inputWindows2D, transpose (kernelsGroupWeights3D)))),
36	inputTile3D)).
37	groupedCoalescedChunkedVectorizedKernelsWeights4D),
38	tiledSlidedCoalescedChunkedVectorizedInput4D)
20	(ifedsfidedcoarescedchuhkedvectorizedinput40)

Chapter 4: Functional IR for Auto-Tuning

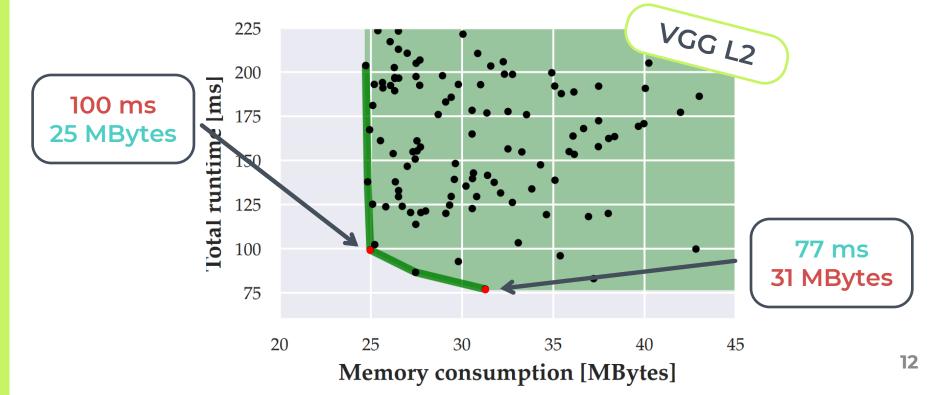
- Shows that a functional IR can in the context of convolution
- Describes an auto-tuning approach which leverages strongly typed functional patterns

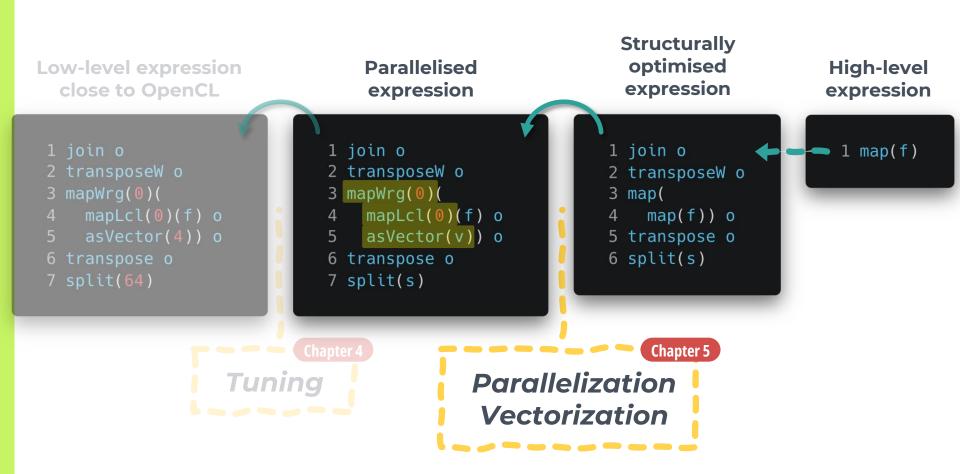

Split(s) \$ $[T]_N$ => N % s == 0 asVector(v) \$ $[T]_N$ => N % v == 0 Slide(len, step) o $[T]_N$ => N >= len SlideStrict(len, step) o $[T]_N$ => N >= len && N >= len && N >= len &&

Results: Throughput

- Lift kernels are:
 - Always faster than direct convolution in ARM-C (x10 on average)
 - In some cases, on par or better than GEMM in ARM-C (x0.7 on average)

Results: Memory Consumption


- Memory consumption of Lift kernels is:
 - On par with direct convolution in ARM-C
 (x1.1 on average)
 - Always better than GEMM in ARM-C (x3.6 on average)


Results: Multi-Objective Optimisation

Shifting priorities:

Low memory footprint vs throughput/latency

Search space exploration for multi-objective optimization

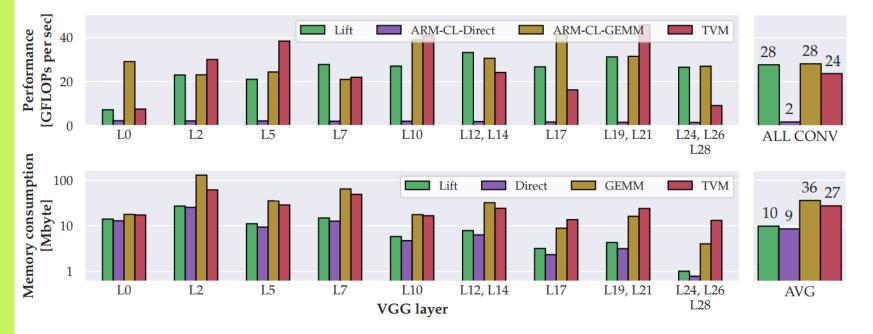
Chapter 5: Parallelism Mapping Through Constraint Satisfaction

I found the approach proposed by the author extremely convincing and fairly natural (to the point I'm almost surprised it wasn't proposed earlier).

CC'22 reviewer

Chapter 5: Parallelism Mapping Through Constraint Satisfaction

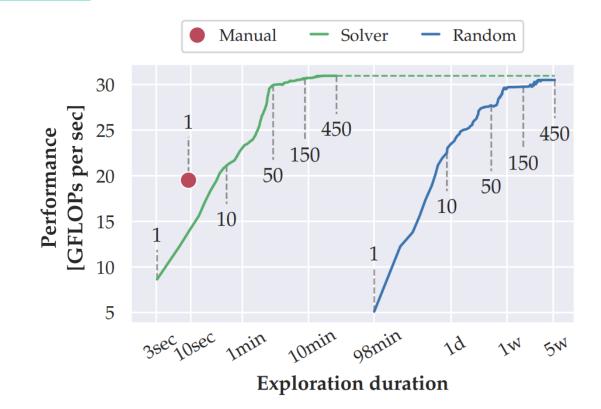
Functional patterns


- ...expose parallelism
- ...express parallel restrictions succinctly
- ...aid dependency analysis for synchronization

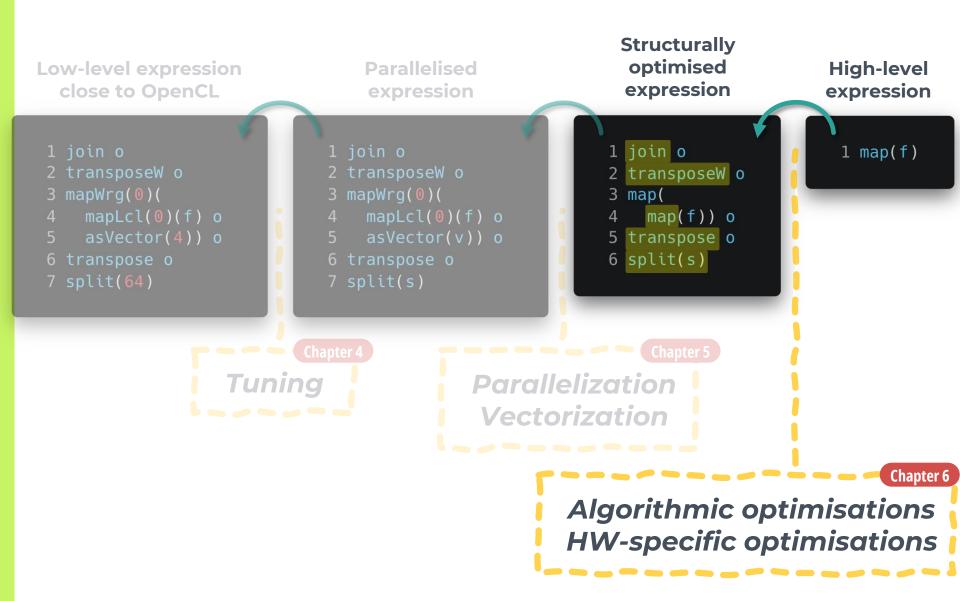
Chapter 5:

- Expresses the GPU parallel programming model as arithmetic constraints on functional patterns
- Uses a constraint solver to explore parallel mappings
- Describes a functional IR-based barrier insertion method

Results: Performance & Memory



Stencil performance **on par** with ARM-CL GEMM and **0.86x** of TVM's


- **3.6x** less memory on average than ARM-CL GEMM
- 2.7x less memory on average than TVM

Results: Exploration Efficiency

Peak performance after 95 minutes

Peaks before the random approach produces even 1 result (a bad one)

Chapter 6: Towards Guided Rewriting

- Expressing design choices directly in a functional IR:
 Decouples optimisation from code generation
 - Truncates the search to valid implementations
 - Helps the user drive rewriting loosely through composable optimisations
- Chapter 6:
 - Defines eleven rewrite points expressing a range of low-level optimisations
 - Shows how two convolution algorithms are produced from one expression

Single annotated convolution expression

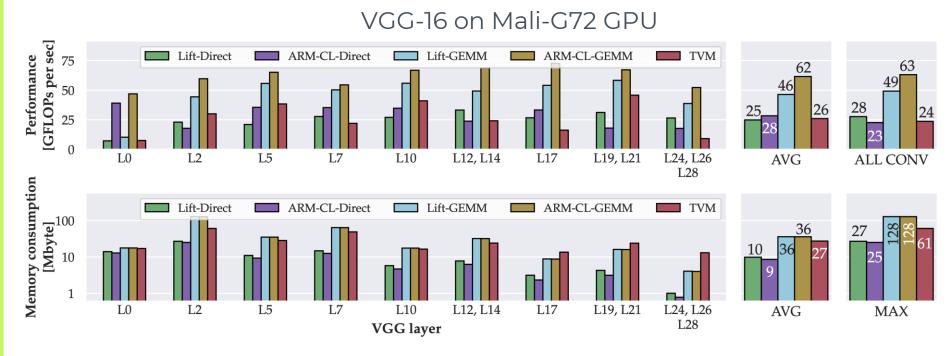
1	def conv(inputData : [[[float] _{inChs}] _{inW}] _{inH} ,				
2	kernelsWeights : [[[[float]inChs]kerW]kerH]outChs,				
3	<pre>padSize : (int, int, int),</pre>				
4	<pre>kernelStride : (int, int)) : [[[float]outChs]outW]outH =</pre>				
5	toHost o				
6	padExtra2D(kernelFission(
7	joinSplitND(padExtralD(kernelFission(slideWindows' \Rightarrow				
8	kernelFission(kernelsWeights' \Rightarrow				
9	oclKernel ((slideWindows'', kernelsWeights'') ⇒				
10	abTile(abTile(
11	<pre>tileNestedMapReduce(reduceFun = +) (</pre>				
12	<pre>tileNestedMapReduce(reduceFun = +) (</pre>				
13	abTile(
14	$mapND_2$ (slideWin: $[T]_{(inChs * kerW * kerH)} \Rightarrow$				
15	$map(singleK: [T]_{(inChs * kerW * kerH)} \Rightarrow$				
16	privatiseAccumulator(
17	<pre>reduce(0, +) o map(*) << zip(slideWin, singleK)</pre>				
18) << kernelsWeights''				
19) << slideWindows'')))))				
20) << (slideWindows', kernelsWeights')				
21] o map(joinND ₂) o toGPU << kernelsWeights				
22))) \circ mapND ₂ (joinND ₂) \circ				
23	<pre>slideND₂(kerH, kerW, kernelStride1, kernelStride2)</pre>				
24) o padND (padSize, value = 0) o toGPU << inputData				

)) o padND₂ (padSize, value = 0) o toGPU << inputData</p>

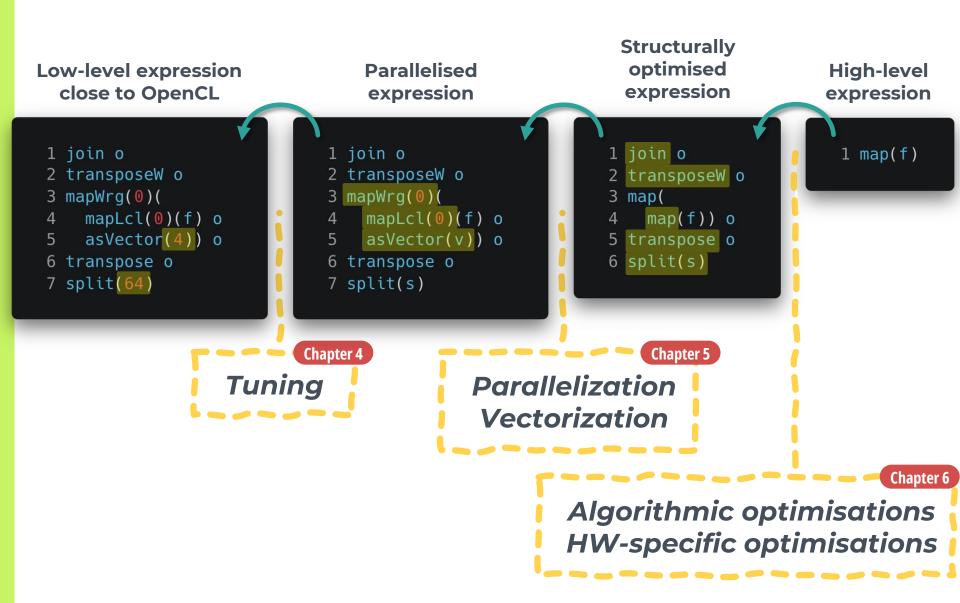
#	Rewrite Point	Struct and tune params	Result	Line	
1	padExtra2D	ps=[4,0]	Extra edge padding, depadding	6	
2	kernelFission		Input preprocessing OpenCL kernel	6	
3	9 optimiseDataLayout	newDimOrder=[0,2,1,3],	Reshaped input for coalescing		
		factors=[8,48,4]			
4	4 materialise	targetMem=global	Input reshaping materialised		
5	splitJoinND	tileSizes=[1,1,4]	Parallelisable vectorisable loops		
	slideND2				
6	kernelFission		Weight preprocessing OpenCL kernel	8	
7	└ optimiseDataLayout	newDimOrder=[0,1.3.2.4],	Reshaped weights for coalescing		
		factors=[1.8.48.4]			
8	4 materialise	targetMem=global	Weight reshaping materialised		
9	splitJoinND	tileSizes=[1,1,4]	Vectorisable loop nest		
10	abTile	tileSizeA=64, tileSizeB=4	Work groups mapped over input & weight tiles	10	
11	4 interchangeMaps		Local threads mapped over input tiles		
12	abTile	tileSizeA-4, tileSizeB-4	Work groups mapped over weight subtiles	10	
13	tileNestedMapReduce	tileSize=192	Parallelisable reduction tree	11	
14	4 interchangeReduceND	newReduceDim=3,	Parallelisable final reduction		
		factors=[4,4]			
15	4 privatiseAccumulator	resultMem=global	Faster accumulator access		
16	4 splitJoinND	factors=[3.8]	Local threads mapped over input & weight subt	iles	
17	tileNestedMapReduce	tileSize=4	Sliding window tiled for prefetching	12	
18	b privatiseAccumulator	resultMem=local	Shared partial reduction results		
19	abTile	tileSizeA=4, tileSizeB=4	Subtiled inputs and weights for prefetching	13	
20	4 materialise	targetMem-private	Prefetched a 4x4 tile of inputs		
21	splitJoinND	tileSizes=[1,4,4]	Vectorisable loop		
22	4 materialise	targetMem=private	Prefetched a 4x4 tile of weights		
23	✤ splitJoinND	tileSizes=[1,4,4]	Vectorisable loop		
24	privatiseAccumulator	targetMem=private	Faster accumulator access	16	

2	kernelFission		Input preprocessing OpenCL kernel	7
3	4 optimiseDataLayout	newDimOrder=[0,3,1,2,4],	Reshaped input for coalescing	
		factors=[2,5,1152,4]		
4	4 materialise	targetMem=global	Input reshaping materialised, im2col	
5	✤ splitJoinND	tileSizes=[9,32,4]	Parallelisable and vectorisable loops	
6	kernelFission		Weight preprocessing OpenCL kernel	8
7	✤ optimiseDataLayout	newDimOrder=[0,3,2,1,4],	Reshaped weights for coalescing	
		factors=[16,4,1152,4]		
8	4 materialise	targetMem=global	Weight reshaping materialised	
9	➡ splitJoinND	tileSizes-[1,1,4]	Vectorisable loop nest	
10	abTile	tileSizeA-5, tileSizeB-4	Global threads mapped over input & weight tiles	10
11	tileNestedMapReduce	tileSize-4	Each thread reduces 4 interleaved windows	12
12	b privatiseAccumulator	resultMem=global	Faster accumulator access	
13	abTile	tileSizeA=5, tileSizeB=4	Subtiled inputs and weights for prefetching	13
14	4 materialise	targetMem=private	Prefetched a 5x4 tile of inputs	
15	➡ splitJoinND	tileSizes=[1,5,4]	Vectorisable loop	
16	4 materialise	targetMem=private	Prefetched a 4x4 tile of weights	
17	⊌ splitJoinND	tileSizes=[1,4,4]	Vectorisable loop	
18	privatiseAccumulator	targetMem-private	Faster accumulator access	16

ind tune parame

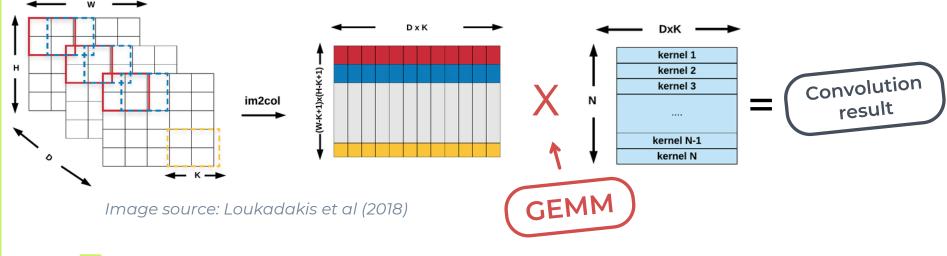

High-performance **im2col+GEMM** #1

#	Rewrite Point	Struct and tune parameter: Result		Line				
	slideND2							
$^{2}_{4}$	kernelFission 9 materialise	targetMem=global	Input preprocessing OpenCL kernel Input reshaping materialised, im2col	7				
5	✤ splitJoinND	tileSizes=[9,32,4]	Parallelisable and vectorisable loops					
6	kernelFission		Weight preprocessing OpenCL kernel	8				
7	♀ optimiseDataLayout	newDimOrder=[0,3,2,1,4],	Reshaped weights for coalescing					
		factors=[16,4,1152,4]						
8	& materialise	targetMem=global	Weight reshaping materialised					
9	✤ splitJoinND	tileSizes=[1,1,4]	Vectorisable loop nest					
10	abTile	tileSizeA=5, tileSizeB=4	Global threads mapped over input & weight tiles	10				
11	tileNestedMapReduce	tileSize=4	Each thread reduces 4 interleaved windows	12				
12	4 privatiseAccumulator	resultMem=global	Faster accumulator access					
13	abTile	tileSizeA=5, tileSizeB=4	Subtiled inputs and weights for prefetching	13				
4		targetMem-private	Prefetched a 5x4 tile of inputs					
15	& splitJoinND	tileSizes=[1.5,4]	Vectorisable loop					
16	& materialise	targetMem-private	Prefetched a 4x4 tile of weights					
17		tileSizes-[1,4,4]	Vectorisable loop					
18	privatiseAccumulator	targetMem=private	Faster accumulator access	16				


High-performance **im2col+GEMM** #2

High-performance **direct** convolution

Results: Performance & Memory


- Using three Lift-generated kernels:
 - Stencil performance **on par** with ARM-CL and TVM
 - Lift-GEMM outperforms TVM and 0.77x of ARM-CL-GEMM
 - Lift-GEMM uses 33% more memory than TVM on average

Auto-Tuning

Convolution: state of the art

- Express as General Matrix Multiplication (GEMM) using im2col
- High-performance libraries provide fast solutions on most devices

im2col increases memory consumption

This is a problem for resource-constrained platforms

Input image size in the two methods (2nd layer of VGG)

Constraints In Convolution

Tuning parameter constraints depend on the applied rewrites

Too many possible constraints to enumerate

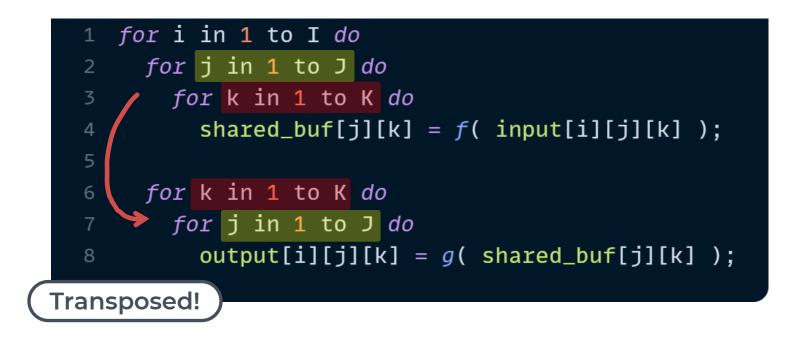
- Tile size has to be a factor of spatial input size
- Vector length has to be a factor of a window size
- Buffer size must not exceed device limit
- □ …etc

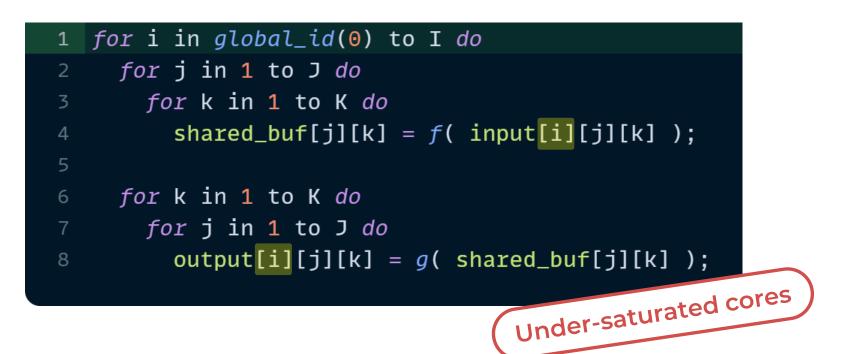
Experimental Setup

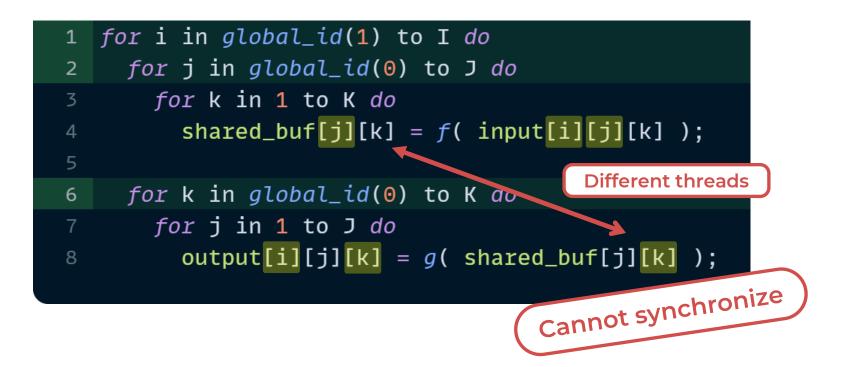
Benchmark:

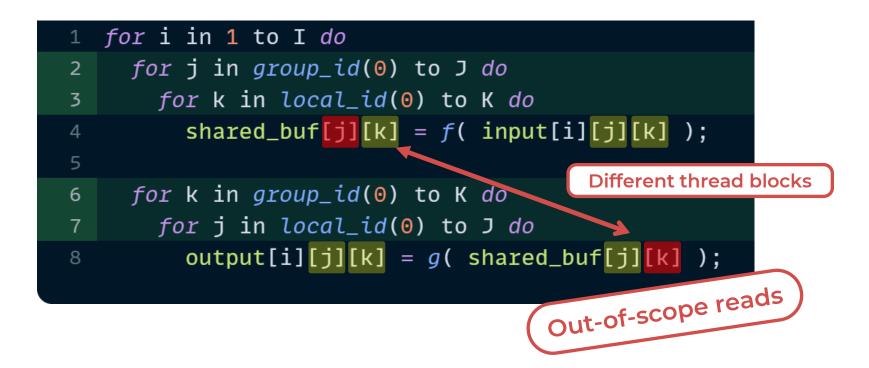
VGG-16

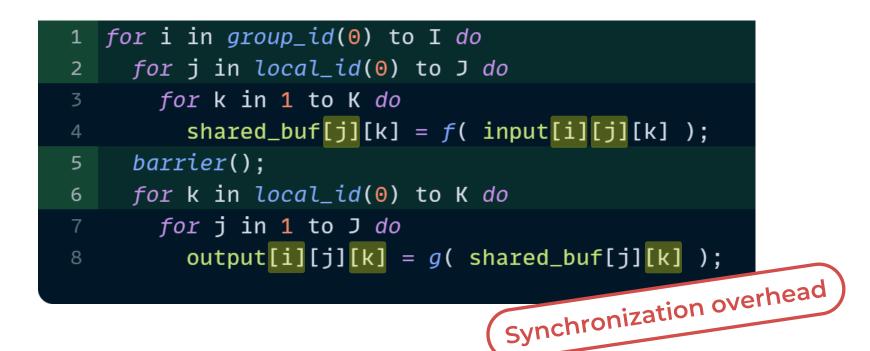
OpenCL kernel generation:

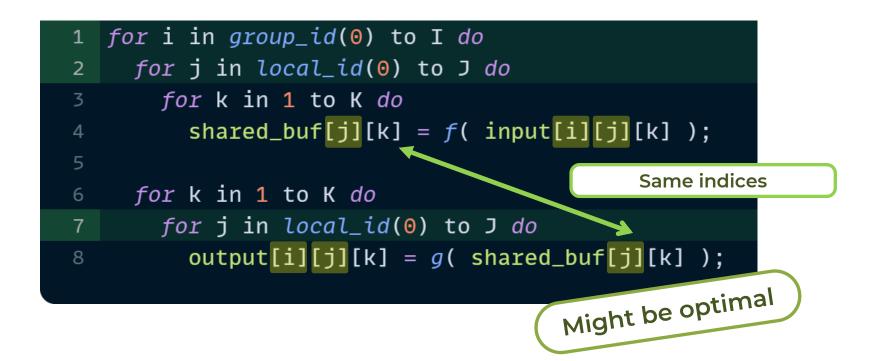

1000 random candidates per layer

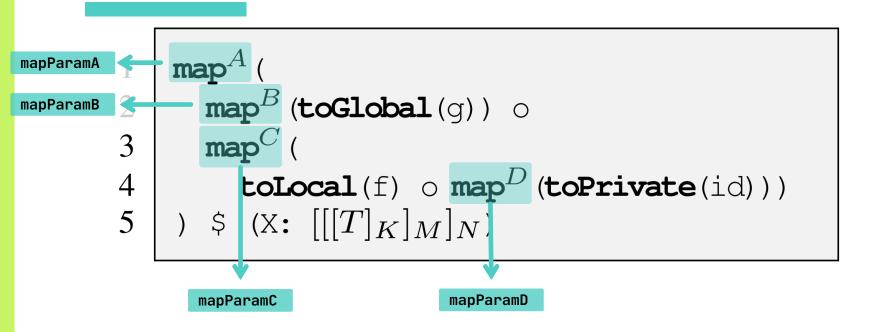

Comparison:


Autotuned ARM Compute Library kernels

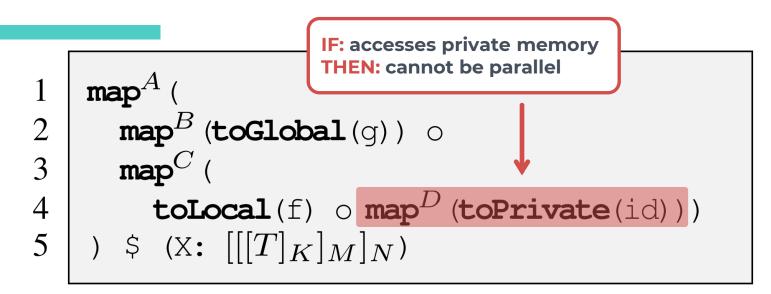

- Platform:
 - ARM Mali-G72 (12 cores) mobile GPU with Kirin 970 SoC


Parallelism Mapping



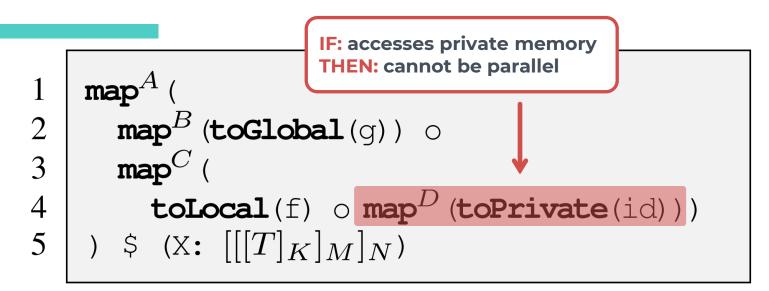


Parallelization: Scheduling Parameters


- Associate a parameter with each map
- Encode scheduling choices as integers
- Model parallelization restrictions as integer constraints

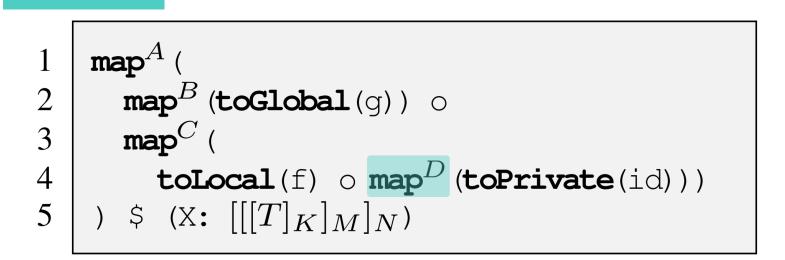
Parallelization: Encoding of Choices

Code value	Map transformation	

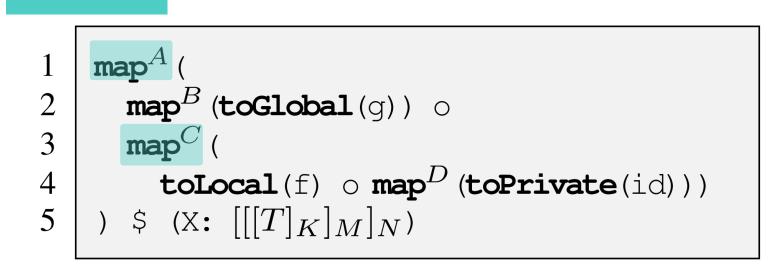

0	mapSeq
1	Fused with the outer map
10, 11, 12	mapLcl in dimension 0, 1 or 2 respectively
20, 21, 22	mapWrg in dimension 0, 1 or 2 respectively
30, 31, 32	mapGlb in dimension 0, 1 or 2 respectively

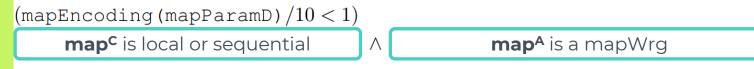
Constraint: Private Memory Scope

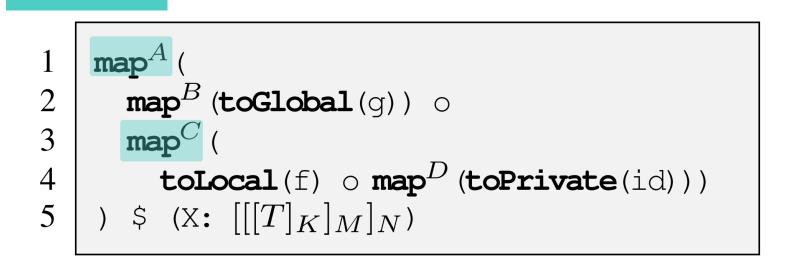
Private memory access constraint. maps that consume or produce private memory cannot be parallelized because private memory is restricted in scope to a single thread.


Constraint: Private Memory Scope

Private memory access constraint. maps that consume or produce private memory cannot be parallelized because private memory is restricted in scope to a single thread.


	Code value	Map transformation
∀m: m.usesPrivateMemory		mapSeq
5	1	Fused with the outer map
GEN CONSTRAINT: mapEncoding(m)/10 < 1	10, 11, 12	mapLcl in dimension 0, 1 or 2
	20, 21, 22	mapWrg in dimension 0, 1 or 2
	30, 31, 32	mapGlb in dimension 0, 1 or 2

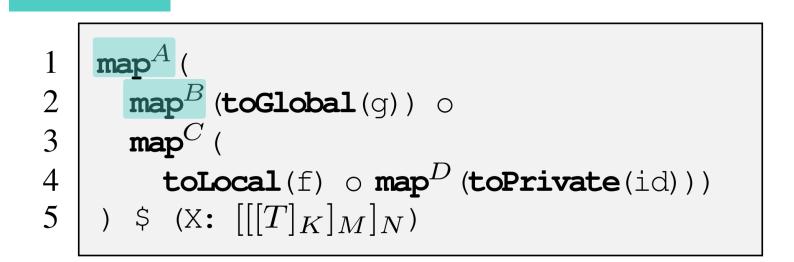

Constraint: Private Memory Scope


(mapEncoding(mapParamD)/10 < 1)

Constraint: Shared Memory Scope



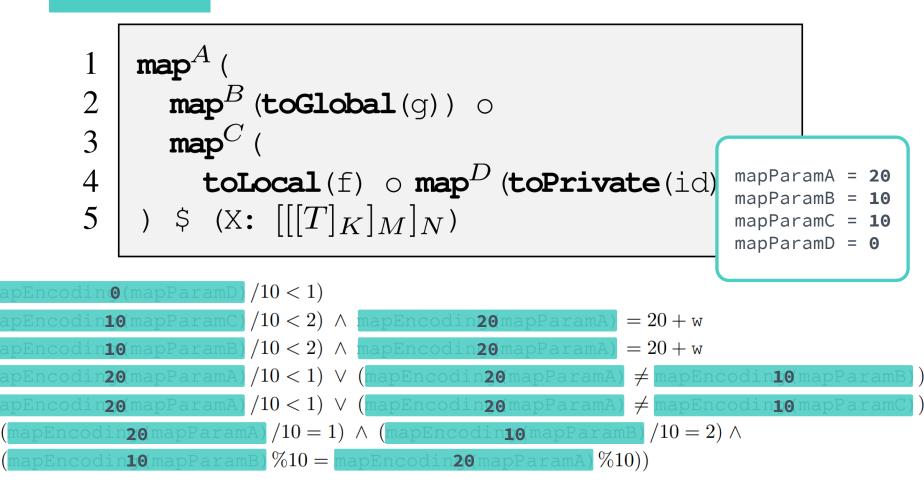
Constraint: Shared Memory Scope


(mapEncoding(mapParamD)/10 < 1) (mapEncoding(mapParamC)/10 < 2) \land mapEncoding(mapParamA) = 20 + w

Constraint: Shared Memory Scope

(mapEncoding(mapParamD)/10 < 1) (mapEncoding(mapParamC)/10 < 2) \land mapEncoding(mapParamA) = 20 + w(mapEncoding(mapParamB)/10 < 2) \land mapEncoding(mapParamA) = 20 + w

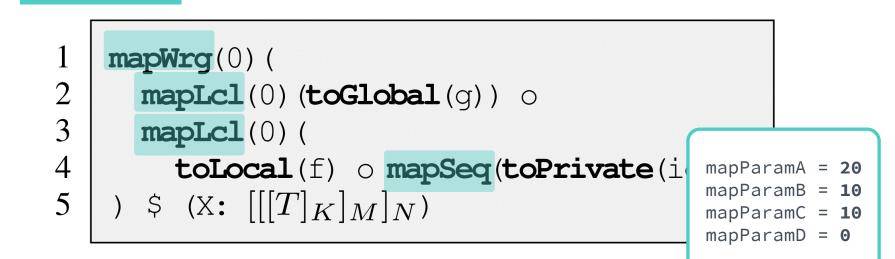
Constraint: Hierarchical Parallelism


Constraint: Hierarchical Parallelism

1
$$\operatorname{map}^{A}($$

2 $\operatorname{map}^{B}(\operatorname{toGlobal}(g)) \circ$
3 $\operatorname{map}^{C}($
4 $\operatorname{toLocal}(f) \circ \operatorname{map}^{D}(\operatorname{toPrivate}(\operatorname{id})))$
5) \$ (X: $[[[T]_{K}]_{M}]_{N})$

 $\begin{array}{l} \left(\texttt{mapEncoding(mapParamD)} / 10 < 1 \right) \\ \left(\texttt{mapEncoding(mapParamC)} / 10 < 2 \right) \land \texttt{mapEncoding(mapParamA)} = 20 + \texttt{w} \\ \left(\texttt{mapEncoding(mapParamB)} / 10 < 2 \right) \land \texttt{mapEncoding(mapParamA)} = 20 + \texttt{w} \\ \left(\texttt{mapEncoding(mapParamA)} / 10 < 1 \right) \lor \left(\texttt{mapEncoding(mapParamA)} \neq \texttt{mapEncoding(mapParamB)} \right) \\ \left(\texttt{mapEncoding(mapParamA)} / 10 < 1 \right) \lor \left(\texttt{mapEncoding(mapParamA)} \neq \texttt{mapEncoding(mapParamC)} \right) \\ \neg \left((\texttt{mapEncoding(mapParamA)} / 10 = 1 \right) \land \left(\texttt{mapEncoding(mapParamB)} / 10 = 2 \right) \land \\ \left(\texttt{mapEncoding(mapParamA)} / 10 = \texttt{mapEncoding(mapParamA)} \right) \\ \end{array}$


+10 more hierarchical parallelism constraints

Constraint Satisfaction

+10 more hierarchical parallelism constraints

Constraint Satisfaction

(mapEncodin@(mapParamD)/10 < 1) (mapEncodin10mapParamC)/10 < 2) ∧ mapEncodin20mapParamA) = 20 + w (mapEncodin10mapParamB)/10 < 2) ∧ mapEncodin20mapParamA) = 20 + w (mapEncodir20mapParamA)/10 < 1) ∨ (mapEncodin20mapParamA) ≠ mapEncodin10mapParamB)) (mapEncodir20mapParamA)/10 < 1) ∨ (mapEncodin20mapParamA) ≠ mapEncodin10mapParamB)) ¬((mapEncodin20mapParamA)/10 = 1) ∧ (mapEncodin10mapParamB)/10 = 2) ∧ (mapEncodin10mapParamB)%10 = mapEncodir20mapParamA)%10))

+10 more hierarchical parallelism constraints

Heuristics

Sequential Map Fusion Heuristic

Perfectly nested sequential maps can always be fused to reduce search space

∀Chain ∈ MapNestingChains, ∀m1 ∈ Chain, ∀m2 ∈ Chain, m2.perfectlyNestedIn(m1) GEN CONSTRAINT: ¬((mapEncoding(m1) = 0) ∧ (mapEncoding(m2) = 0))

Code value	Map transformation		
0	mapSeq		
1	Fused with the outer map		
10, 11, 12	mapLcl in dimension 0, 1 or 2 respectively		
20, 21, 22	mapWrg in dimension 0, 1 or 2 respectively		
30, 31, 32	mapGlb in dimension 0, 1 or 2 respectively		

12)) \$ p2096
13)) \$ p27462
14)) o Map((p62981 ->
15	TransposeW() o Map((p5669 ->
16	TransposeW() \$ p5669
17)) \$ p62981
18)) o Map((p38465 ->
19	Map((p4026 ->
20	Map((p31009 ->
21	(p17262 ->
22	···· (p13965 ->
23	Join() o Map((p57787 ->
24	Split(v_tileHeight_13) o Split(v_tileWidth_12) o Map((p17309 -
25	Map((p43233 ->
26	toGlobal((p36987 ->
27	id \$ p36987
28	• • • • • • • • • • • • • •)) • \$ • p43233
29)) o ReduceSeq((p52739, p34159 ->
30	add \$ (p52739, p34159)
31)) \$ (toPrivate((p49062 ->
32	id \$ p49062
33)) \$ 0.0f, p17309)
34)) o Join() o Join() \$ p57787
35)) o Map((p42460 ->
36	Map((p49891 ->
37	Map((p19231 ->
38	Transpose() \$ p19231
39)) \$ p49891
40	• • • • • • • • • • • • • • • • • • •
41)) o Map((p9193 ->
42	Map((p3082>-
43	······································
44	• • • • • • • • • • • • • • •)) <u>\$ • p91</u> 93
45	••••••••••••••••••••••••••••••••••••••
46	Transpose() \$ p41734
47	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>
48	Transpose() \$ p53541
49)) o Map((p32600 ->
50	Map((p58028>-
51	Transpose() \$ p58028

12	····)) \$ p2096	
13)) \$ p27462	
14)) o Map (p62981 ->	mapParam0
15	TransposeW() o Map((p5669 ->	mapParam1
16	TransposeW() \$ p5669	
17)) <u>\$ p62981</u>	
18)) o Map (p38465 ->	🔶 mapParam2
19	Map((p4026 ->	mapParam3
20	Map((p31009 ->	mapParam4
21	(p17262 ->	
22	·····(p13965 ->	
23	Join() o Map((p57787>	🔶 mapParam5
24	<pre>Split(v_tileHeight_13) o Split(v_tileWidth_12) o Map((p17309 -></pre>	🔶 mapParam6
25	Map((p43233>	
26	<pre>toGlobal((p36987 -></pre>	
27	id \$ p36987	
28	• • • • • • • • • • • • • • • • • • •	• • •
29	••••••••••••••••••••••••••••••••••••••	
30	······································	
31	<pre></pre>	
32	id \$ p49062	
33	·····)) \$ 0.0f, p17309)	
34	• • • • • • • • • • • • • • • • • • •	
35)) o Map((p42460 ->	
36	Map((p49891 ->	
37	Map((p19231 ->	
38	Transpose() \$ p19231	
39)) \$ p49891	
40)) \$ p42460	50
41)) o Map((p9193 ->	
42	Map((p3082 ->	
43	Transpose() \$ p3082	
44)) \$ p9193	
45)) o Map((p41734 ->	
46	Transpose() \$ p41734	
47)) o Transpose() o Map((p53541 ->	
48	Transpose() \$ p53541	
49)) o Map((p32600 ->	50
50	Map((p58028 ->	
51	Transpose() \$ p58028	

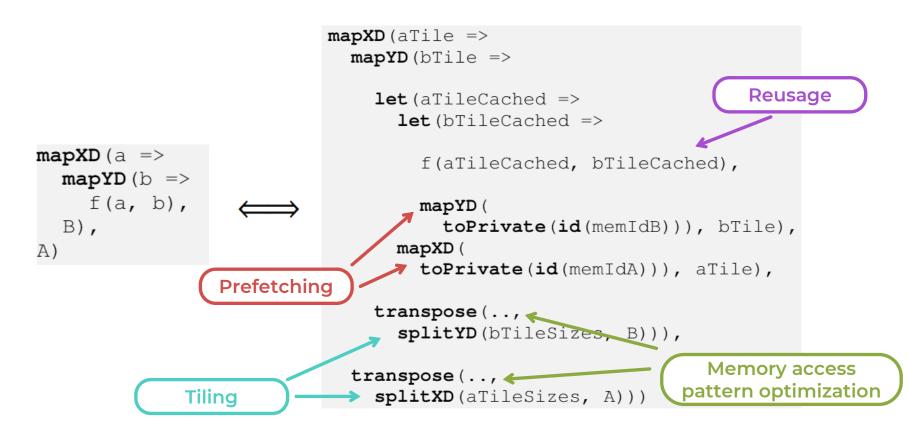
12)) \$ p2096
13)) \$ p27462
14)) o Map((p62981 ->
15	TransposeW() - o Map((p5669 - >
16	TransposeW() \$ p5669
17)) \$ p62981
18)) o MapWrg(2, (p38465 ->
19	MapWrg(0, (p4026 ->
20	MapSeq((p31009 ->
21	(p17262 ->
22	(p13965 ->
23	Join() o MapLcl(2,(p57787 ->
24	Split(v_tileHeight_13) o Split(v_tileWidth_12) o MapLcl(0,(p17309
25	MapSeq((p43233 ->
26	toGlobal((p36987 ->
27	id \$ p36987
28	·····)) \$ p43233
29)) o ReduceSeq((p52739, p34159 ->
30	add \$ (p52739, p34159)
31)) \$ (toPrivate((p49062 ->
32	id \$ p49062
33)) \$ 0.0f, p17309)
34)) <u>o Join() o Join()</u> \$ p57787
35))-o_Map((p42460>-
36	Map((p49891 ->-
37	Map((p19231 ->
38	••••••••••••••••••••••••••••••••••••••
39	·····))\$ p49891
40	••••••••••••••)) <mark>\$ p42460</mark>
41)) o Map((p9193 ->
42	мар((р3082 ->
43	Transpose() \$ p3082
44	·····))-\$-p9193
45)) o Map((p41734 ->
46	·················Transpose() \$ p41734
47	<pre></pre>
48	······································
49)) o Map((p32600 ->-
50	<mark>Map((</mark> p58028>-
51	Transpose() \$ p58028

Guided Rewriting

Rewrite points expanded

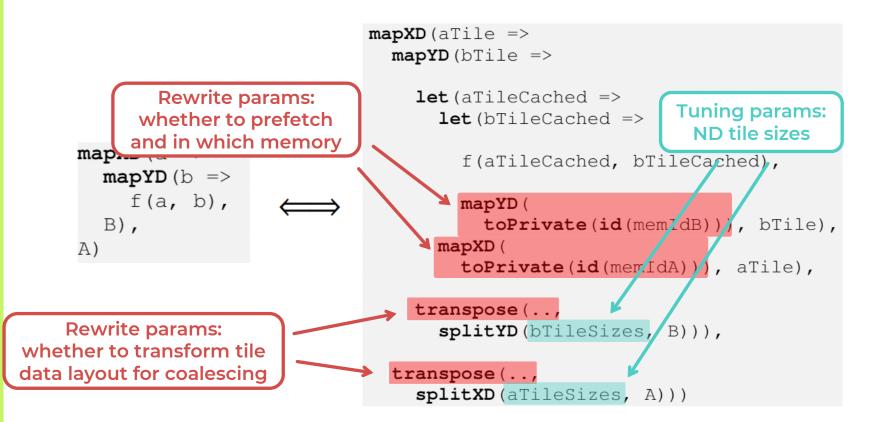
X3]

((p23724 ->		····)) \$ p11272	124	·····)) o Map((p28717 ->
ransposeW() \$ p23724		<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	125	······································
o TransposeW() o Map((p53064 ->		·····Map((p13698·->·	126	······Map((p257 -> ·
ap((p59387 ->		<pre>output = add \$ (Get(0) \$ p13698, Get(1) \$ p13698)</pre>	127	·······················(p38712·->·
Join() \$ p59387		·····)) o Zip() \$ (p50867, p35848)	128	(p53378 ->
) \$ p53064)) \$ (Map((p29056 ->	129	······································
Join() o Map((p22048 ->		<pre>control toPrivate((p64395 ->)</pre>	130	••••••••••••••••••••••••••••••••••••••
ap((p3291 ->		id \$ p64395	131	Map((p58124 ->
Map((p36687 ->			132	<pre>reduceSeq((p59290, p5770 -></pre>
Join() \$ p36687		()) \$ 0.0f, p34694)	133	add \$ (p59290, mult \$ (
)) o Join() o Map((p38111 ->		·····)) \$ p37670	134	Get(0) \$ p5770, Get(1) \$ p5770))
TransposeW() \$ p38111		· · ·)) · \$ p38162 ·)) · o · Map((p11356 -> ·	135	<pre>(toPrivate((p9979 ->)) \$ (toPrivate()</pre>
)) \$ p3291		Map((pf1280 ->	136	······································
) \$ p22048	79	······································	137 138))\$ 0.0f, Zip() \$ (Join() • Join() *
o-Map((p14415>-		()) \$ p11356	130	••••••••••••••••••••••••••••••••••••••
ransposeW() o Map((p3478 ->)) o Map((p27341 ->	139	······································
TransposeW() \$ p3478	82	Transpose() \$ p27341	140	································) \$ p33776
) \$ p14415	83)) o Transpose() o Map((p3491 ->	141	·····································
- Map((p8637 ->		p3491	142	······································
ap((p56646 · -> ·)) o Join() o Map((p23870 ->	144	<pre></pre>
Map((p60274 ->		Map((p12189 ->	145	······································
· · · (p44931 · -> ·		(p18636 ->)	146	······································
· · · · (p16296 · -> ·		Join()-o-Map((p18649>-	147	························)) \$ p7268
Join() o Map((p61748 ->		••••••••••••••••••••••••••••••••••••••	148	·······················)) o Map((p16531 ->
····Map((p3056 -> ·			149	······································
······································			150	••••••••••••••••••••••••••••••••••••••
Join().\$.p10788		Map((p18234 ->		·····)) \$ p16531
·····)) o Join() o Map((p2536 ->				·····)) · o · Map((p42971 · -> ·
······TransposeW()·\$·p2536				••••••••••••••••••••••••••••••••••••••
·····)) \$-p3056	95	······)) \$ p18234		••••••••••••••••••••••••••••••••••••••
·····)) \$ p61748				······································
····)) o Map((p44436 -> ·		···························) · \$ p8803 ·······················) · \$ p26353		······································
·····TransposeW()·o·Map((p27595·->·		······································		<pre></pre>
·····TransposeW()·\$·p27595		(p38106, p46524 ->		••••••••••••••••••••••••••••••••••••••
····)) \$ p44436				······································
(p59960 ->				······································
····Map((p8566 -> ·		······································		······························)) \$ p26122
······································			162	······))\$ p48512
······································				((, , , , , , , , , , , ,)) \$ p42971
······································		············)) \$ p3344		((p54387 ->
······················(p26213·->·		••••••••••••••••••••••••••••••••••••••		
······································		····)) \$ p25181	166 167	·····································
······································)) o Split(v_seqWindowsPerThreadY_21) o		······································
······································		Split(v_seqWindowsPerThreadX_20) o Split(1) o	169	························) \$ p30304
······················))·o·Map((p11838·->·		Zip() \$ (Join() o Join() o Join() \$ p38106,		······································
······································	112 113	Join() o Join() o Join() o Join() o Map((p54992 ->-	171	······································
······································	113	Map((p7921 ->- 	172	······································
································))·\$·p11838	114		173	·······························)) \$ p37721
·····)) o Map((p38162 ->	116			······························)) \$ p257
······································	117			······································
······································	118	························)) \$ p7921		<pre></pre>
······································	119	() () () () () () () () () () () () () (••••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••	120	<pre>>> (p20319 ->)</pre>		·····)) \$ p57134
	171		170	


Map((Tra)) o Map | J |))

Mar

)))) o Tra T)))) o Map


Guided Rewriting: Tiling

When two nested ND-maps iterate over different buffers, tiles can be prefetched and reused

Guided Rewriting: Tiling

When two nested ND-maps iterate over different buffers, tiles can be prefetched and reused

