
▣ Naums Mogers

Guided Rewriting and Constraint Satisfaction
for Parallel GPU Code Generation

Parallel Architectures

Parallel architectures are hard to optimize for

2

HOST

GPU device

Work group (core) (x, y, z)

Local (shared) mem

Global memory

Thread
(gX,gY,gZ)
(lX, lY, lZ)

Private
mem

Thread
(gX,gY,gZ)
(lX, lY, lZ)

Private
mem

Thread
(gX,gY,gZ)
(lX, lY, lZ)

Private
mem

Thread
(gX,gY,gZ)
(lX, lY, lZ)

Private
mem

Work group (core) (x, y, z)

Local (shared) mem

Thread
(gX,gY,gZ)
(lX, lY, lZ)

Private
mem

Thread
(gX,gY,gZ)
(lX, lY, lZ)

Private
mem

Thread
(gX,gY,gZ)
(lX, lY, lZ)

Private
mem

Thread
(gX,gY,gZ)
(lX, lY, lZ)

Private
mem

©NVIDIA

©ARM

©Xilinx

??

??
??

??

??

Parallel Architectures

Parallel architectures are hard to optimize for

3

HOST

GPU device

Work group (core) (x, y, z)

Local (shared) mem

Global memory

Thread
(gX,gY,gZ)
(lX, lY, lZ)

Private
mem

Thread
(gX,gY,gZ)
(lX, lY, lZ)

Private
mem

Thread
(gX,gY,gZ)
(lX, lY, lZ)

Private
mem

Thread
(gX,gY,gZ)
(lX, lY, lZ)

Private
mem

Work group (core) (x, y, z)

Local (shared) mem

Thread
(gX,gY,gZ)
(lX, lY, lZ)

Private
mem

Thread
(gX,gY,gZ)
(lX, lY, lZ)

Private
mem

Thread
(gX,gY,gZ)
(lX, lY, lZ)

Private
mem

Thread
(gX,gY,gZ)
(lX, lY, lZ)

Private
mem

©NVIDIA

©ARM

©Xilinx

??

??
??

??

??

The Programmability Challenge

▣ Hierarchical execution and memory models

▣ Diverse and heterogeneous accelerator architectures

▣ Manual optimisation is too costly

▣ Heuristic optimisation strategies are over-constrained

▣ Automatic optimisation suffers from the search space
explosion

4

Current Approaches

▣ Kernel libraries
□ Costly to maintain and extend

▣ User-provided schedules (Halide) and
design choices (PetaBricks, Tangram)
□ Burden on the user

▣ Polyhedral compilation (Tensor Comprehensions)
□ Limited to affine loops

▣ Functional rewriting (Futhark, Accelerate, Lift, RISE)
□ Dependence on heuristics

5

6

??

High-level
expression

Low-level expression
close to OpenCL

7

High-level
expression

Low-level expression
close to OpenCL

Tuning
Chapter 4

Parallelised
expression

Chapter 4:
Functional IR for Auto-Tuning

▣ Shows that a functional IR can represent low-level
optimisations in the context of convolution

8

Chapter 4:
Functional IR for Auto-Tuning

▣ Shows that a functional IR can in the context of
convolution

▣ Describes an auto-tuning approach which
leverages strongly typed functional patterns

9

Results: Throughput

▣ Lift kernels are:

□ Always faster than direct convolution in ARM-C
(x10 on average)

□ In some cases, on par or better than GEMM in ARM-C
(x0.7 on average)

10

Results: Memory Consumption

▣ Memory consumption of Lift kernels is:

□ On par with direct convolution in ARM-C
(x1.1 on average)

□ Always better than GEMM in ARM-C
(x3.6 on average)

11

Results: Multi-Objective Optimisation

▣ Shifting priorities:
□ Low memory footprint vs throughput/latency

▣ Search space exploration for multi-objective optimization

12

100 ms
25 MBytes

77 ms
31 MBytes

13

High-level
expression

Low-level expression
close to OpenCL

Parallelization
Vectorization

Tuning
Chapter 4 Chapter 5

Parallelised
expression

Structurally
optimised
expression

Chapter 5:
Parallelism Mapping Through Constraint
Satisfaction

14

CC’22 reviewer

I found the approach proposed by the author
extremely convincing and fairly natural (to the point
I’m almost surprised it wasn’t proposed earlier).

Chapter 5:
Parallelism Mapping Through Constraint
Satisfaction

▣ Functional patterns
□ …expose parallelism
□ …express parallel restrictions succinctly
□ …aid dependency analysis for synchronization

▣ Chapter 5:
□ Expresses the GPU parallel programming model as

arithmetic constraints on functional patterns

□ Uses a constraint solver to explore parallel mappings

□ Describes a functional IR-based barrier insertion
method

15

16

Results: Performance & Memory

▣ Stencil performance on par with ARM-CL GEMM and 0.86x of TVM’s

▣ 3.6x less memory on average than ARM-CL GEMM

▣ 2.7x less memory on average than TVM

VGG-16 on Mali-G72 GPU

17

Results: Exploration Efficiency

▣ Peak performance after 95 minutes

▣ Peaks before the random approach produces even 1 result (a bad one)

Low-level expression
close to OpenCL

Parallelised
expression

Parallelization
Vectorization

Tuning
Chapter 4 Chapter 5

18

High-level
expression

Algorithmic optimisations
HW-specific optimisations

Chapter 6

Structurally
optimised
expression

Chapter 6:
Towards Guided Rewriting

▣ Expressing design choices directly in a functional IR:
□ Decouples optimisation from code generation

□ Truncates the search to valid implementations

□ Helps the user drive rewriting loosely through
composable optimisations

▣ Chapter 6:
□ Defines eleven rewrite points expressing a range of

low-level optimisations

□ Shows how two convolution algorithms are produced
from one expression 19

20

High-performance
direct convolution

High-performance
im2col+GEMM #1

High-performance
im2col+GEMM #2

Single annotated
convolution expression

21

Results: Performance & Memory

▣ Using three Lift-generated kernels:
□ Stencil performance on par with ARM-CL and TVM
□ Lift-GEMM outperforms TVM and 0.77x of ARM-CL-GEMM
□ Lift-GEMM uses 33% more memory than TVM on average

VGG-16 on Mali-G72 GPU

Low-level expression
close to OpenCL

Parallelised
expression

Parallelization
Vectorization

Tuning
Chapter 4 Chapter 5

22

High-level
expression

Algorithmic optimisations
HW-specific optimisations

Chapter 6

Structurally
optimised
expression

Auto-Tuning

Convolution: state of the art

▣ Express as General Matrix Multiplication (GEMM) using
im2col

▣ High-performance libraries provide fast solutions on most
devices

25

Image source: Loukadakis et al (2018)

▣ im2col increases memory consumption
□ This is a problem for resource-constrained platforms

X =

116
MB

13 MB

0

20

40

60

80

100

120

140

im2col-processed input Stencil input

S
iz

e
Input image size in the two methods (2nd layer of VGG)

Constraints In Convolution

▣ Tuning parameter constraints depend on the
applied rewrites

▣ Too many possible constraints to enumerate

□ Tile size has to be a factor of spatial input size
□ Vector length has to be a factor of a window size
□ Buffer size must not exceed device limit
□ …etc

27

Experimental Setup

▣ Benchmark:
□ VGG-16

▣ OpenCL kernel generation:
□ 1000 random candidates per layer

▣ Comparison:
□ Autotuned ARM Compute Library kernels

▣ Platform:
□ ARM Mali-G72 (12 cores) mobile GPU

with Kirin 970 SoC

28

Parallelism Mapping

Parallelization Is Hard

30

Transposed!

Parallelization Is Hard

31

Parallelization Is Hard

32

Different threads

Parallelization Is Hard

33

Different thread blocks

Parallelization Is Hard

34

Parallelization Is Hard

35

Same indices

Parallelization:
Scheduling Parameters

36

mapParamA

mapParamB

▣ Associate a parameter with each map

▣ Encode scheduling choices as integers

▣ Model parallelization restrictions as integer constraints

mapParamC mapParamD

Parallelization:
Encoding of Choices

37

Constraint:
Private Memory Scope

38

IF: accesses private memory
THEN: cannot be parallel

Constraint:
Private Memory Scope

39

IF: accesses private memory
THEN: cannot be parallel

Constraint:
Private Memory Scope

40

Constraint:
Shared Memory Scope

41

mapC is local or sequential mapA is a mapWrg

Constraint:
Shared Memory Scope

42

Constraint:
Shared Memory Scope

43

Constraint:
Hierarchical Parallelism

44

mapA is not parallel mapA and mapB are not parallelized in the same way

Constraint:
Hierarchical Parallelism

45

+10 more hierarchical parallelism constraints

Constraint Satisfaction

46

+10 more hierarchical parallelism constraints

mapParamA = 20
mapParamB = 10
mapParamC = 10
mapParamD = 0_

0

10 20

10 20

20 20 10

20 20 10

20 10

10 20

Constraint Satisfaction

47

+10 more hierarchical parallelism constraints

mapParamA = 20
mapParamB = 10
mapParamC = 10
mapParamD = 0_

0

10 20

10 20

20 20 10

20 20 10

20 10

10 20

Heuristics

48

49

50

mapParam0
mapParam1

mapParam2

mapParam3
mapParam4

mapParam5
mapParam6

50

51

51

Guided Rewriting

53Rewrite points expanded

Guided Rewriting: Tiling

54

▣ When two nested ND-maps iterate over different
buffers, tiles can be prefetched and reused

Prefetching

Reusage

Tiling
Memory access

pattern optimization

Guided Rewriting: Tiling

55

▣ When two nested ND-maps iterate over different
buffers, tiles can be prefetched and reused

Rewrite params:
whether to prefetch

and in which memory

Tuning params:
ND tile sizes

Rewrite params:
whether to transform tile
data layout for coalescing

	Slide 1
	Slide 2: Parallel Architectures
	Slide 3: Parallel Architectures
	Slide 4: The Programmability Challenge
	Slide 5: Current Approaches
	Slide 6
	Slide 7
	Slide 8: Chapter 4: Functional IR for Auto-Tuning
	Slide 9: Chapter 4: Functional IR for Auto-Tuning
	Slide 10: Results: Throughput
	Slide 11: Results: Memory Consumption
	Slide 12: Results: Multi-Objective Optimisation
	Slide 13
	Slide 14: Chapter 5: Parallelism Mapping Through Constraint Satisfaction
	Slide 15: Chapter 5: Parallelism Mapping Through Constraint Satisfaction
	Slide 16: Results: Performance & Memory
	Slide 17: Results: Exploration Efficiency
	Slide 18
	Slide 19: Chapter 6: Towards Guided Rewriting
	Slide 20
	Slide 21: Results: Performance & Memory
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Convolution: state of the art
	Slide 26
	Slide 27: Constraints In Convolution
	Slide 28: Experimental Setup
	Slide 29
	Slide 30: Parallelization Is Hard
	Slide 31: Parallelization Is Hard
	Slide 32: Parallelization Is Hard
	Slide 33: Parallelization Is Hard
	Slide 34: Parallelization Is Hard
	Slide 35: Parallelization Is Hard
	Slide 36: Parallelization: Scheduling Parameters
	Slide 37: Parallelization: Encoding of Choices
	Slide 38: Constraint: Private Memory Scope
	Slide 39: Constraint: Private Memory Scope
	Slide 40: Constraint: Private Memory Scope
	Slide 41: Constraint: Shared Memory Scope
	Slide 42: Constraint: Shared Memory Scope
	Slide 43: Constraint: Shared Memory Scope
	Slide 44: Constraint: Hierarchical Parallelism
	Slide 45: Constraint: Hierarchical Parallelism
	Slide 46: Constraint Satisfaction
	Slide 47: Constraint Satisfaction
	Slide 48: Heuristics
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Guided Rewriting: Tiling
	Slide 55: Guided Rewriting: Tiling

